Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the combinatorics of crystal graphs, II. The crystal commutor

Author: Cristian Lenart
Journal: Proc. Amer. Math. Soc. 136 (2008), 825-837
MSC (2000): Primary 20G42; Secondary 17B10, 22E46
Published electronically: November 30, 2007
MathSciNet review: 2361854
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an explicit combinatorial realization of the commutor in the category of crystals which was first studied by Henriques and Kamnitzer. Our realization is based on certain local moves defined by van Leeuwen.

References [Enhancements On Off] (What's this?)

  • 1. A. Berenstein and A. Zelevinsky.
    Canonical bases for the quantum group of type $ A\sb r$ and piecewise-linear combinatorics.
    Duke Math. J., 82:473-502, 1996. MR 1387682 (97g:17007)
  • 2. A. Berenstein and A. Zelevinsky.
    Tensor product multiplicities, canonical bases and totally positive varieties.
    Invent. Math., 143:77-128, 2001. MR 1802793 (2002c:17005)
  • 3. N. Bourbaki.
    Groupes et Algèbres de Lie. Chp. IV-VI.
    Masson, Paris, 1981.
  • 4. V. G. Drinfel'd.
    Quasi-Hopf algebras.
    Leningrad Math. J., 1:1419-1457, 1990. MR 1047964 (91b:17016)
  • 5. W. Fulton.
    Young Tableaux, volume 35 of London Math. Soc. Student Texts.
    Cambridge Univ. Press, Cambridge and New York, 1997. MR 1464693 (99f:05119)
  • 6. A. Henriques and J. Kamnitzer.
    Crystals and coboundary categories.
    Duke Math. J., 132:191-216, 2006. MR 2219257
  • 7. A. Joseph.
    Quantum Groups and Their Primitive Ideals, volume 29 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
    Springer-Verlag, Berlin, 1995. MR 1315966 (96d:17015)
  • 8. J. Kamnitzer.
    The crystal structure on the set of Mirković-Vilonen polytopes. Adv. Math., 215:66-93, 2007.
  • 9. J. Kamnitzer and P. Tingley.
    A definition of the crystal commutor using Kashiwara's involution.
  • 10. M. Kashiwara.
    Crystalizing the $ q$-analogue of universal enveloping algebras.
    Commun. Math. Phys., 133:249-260, 1990. MR 1090425 (92b:17018)
  • 11. M. Kashiwara.
    On crystal bases.
    In Representations of groups (Banff, AB, 1994), volume 16 of CMS Conf. Proc., pages 155-197. Amer. Math. Soc., Providence, RI, 1995. MR 1357199 (97a:17016)
  • 12. M. Kashiwara and T. Nakashima.
    Crystal graphs for representations of the $ q$-analogue of classical Lie algebras.
    J. Algebra, 165:295-345, 1994. MR 1273277 (95c:17025)
  • 13. C. Lenart.
    On the combinatorics of crystal graphs, I. Lusztig's involution.
    Adv. Math., 211:204-243, 2007. MR 2313533
  • 14. C. Lenart and A. Postnikov.
    Affine Weyl groups in $ K$-theory and representation theory.
    Int. Math. Res. Not., Article ID rnm038, 65pp.
  • 15. C. Lenart and A. Postnikov.
    A combinatorial model for crystals of Kac-Moody algebras.
    To appear in Trans. Amer. Math. Soc.
  • 16. P. Littelmann.
    Paths and root operators in representation theory.
    Ann. of Math. (2), 142:499-525, 1995. MR 1356780 (96m:17011)
  • 17. P. Littelmann.
    Characters of representations and paths in $ {\mathfrak{h}}\sp\ast\sb {\mathbb{R}}$.
    In Representation theory and automorphic forms (Edinburgh, 1996), volume 61 of Proc. Sympos. Pure Math., pages 29-49. Amer. Math. Soc., Providence, RI, 1997. MR 1476490 (98j:17024)
  • 18. G. Lusztig.
    Canonical bases arising from quantized enveloping algebras. II.
    Progr. Theoret. Phys. Suppl., 102:175-201, 1991. MR 1182165 (93g:17019)
  • 19. G. Lusztig.
    Introduction to Quantum Groups, volume 110 of Progress in Mathematics.
    Birkhäuser Boston Inc., Boston, MA, 1993. MR 1227098 (94m:17016)
  • 20. R. P. Stanley.
    Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics.
    Cambridge University Press, Cambridge, 1999. MR 1676282 (2000k:05026)
  • 21. J. R. Stembridge.
    Combinatorial models for Weyl characters.
    Adv. Math., 168:96-131, 2002. MR 1907320 (2003j:17007)
  • 22. M. A. A. van Leeuwen.
    An analogue of jeu de taquin for Littelmann's crystal paths.
    Sém. Lothar. Combin., 41:Art. B41b, 23 pp. (electronic), 1998.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20G42, 17B10, 22E46

Retrieve articles in all journals with MSC (2000): 20G42, 17B10, 22E46

Additional Information

Cristian Lenart
Affiliation: Department of Mathematics and Statistics, State University of New York at Albany, Albany, New York 12222

Keywords: Crystals, root operators, coboundary category, commutor, Lusztig's involution, van Leeuwen's jeu de taquin.
Received by editor(s): February 16, 2007
Published electronically: November 30, 2007
Additional Notes: The author was supported by National Science Foundation grant DMS-0403029
Communicated by: Jim Haglund
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society