Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A group structure on squares


Authors: Ravi A. Rao and Selby Jose
Journal: Proc. Amer. Math. Soc. 136 (2008), 1181-1191
MSC (2000): Primary 13C10, 15A04, 19G12
DOI: https://doi.org/10.1090/S0002-9939-07-09065-X
Published electronically: December 27, 2007
MathSciNet review: 2367092
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there is an abelian group structure on the orbit set of ``squares'' of unimodular rows of length $ n$ over a commutative ring of stable dimension $ d$ when $ d = 2n - 3$, $ n$ odd and also an abelian group structure on the orbit set of ``fourth powers'' of unimodular rows of length $ n$ over a commutative ring of stable dimension $ d$ when $ d = 2n - 3$, $ n$ even.


References [Enhancements On Off] (What's this?)

  • 1. J.F. ADAMS, Vector fields on spheres. Ann. of Math. (2), 75, 603-632 (1962). MR 0139178 (25:2614)
  • 2. H. BASS, Algebraic $ K$-theory. W. A. Benjamin, Inc., New York-Amsterdam (1968). MR 0249491 (40:2736)
  • 3. S.M. BHATWADEKAR and RAJA SRIDHARAN, The Euler class group of a Noetherian ring. Compositio Math. 122, no. 2, 183-222 (2000). MR 1775418 (2001g:13018)
  • 4. S.M. BHATWADEKAR and RAJA SRIDHARAN, On Euler classes and stably free projective modules. Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), 139-158, Tata Inst. Fund. Res. Stud. Math. 16, Tata Inst. Fund. Res., Bombay, 2002. MR 1940666 (2003i:13012)
  • 5. A.S. GADRE and R.A. RAO, A nice group structure on the orbit space of unimodular rows, (preprint 2006), accepted and to appear in K-theory, January 2008.
  • 6. S. JOSE and R.A. RAO, A structure theorem for the Elementary Unimodular Vector group, Trans. Amer. Math. Soc. 358, no.7, 3097-3112 (2005). MR 2216260 (2007a:20047)
  • 7. S. JOSE and R.A. RAO, A local global principle for the elementary unimodular vector group, Commutative Algebra and Algebraic Geometry (Bangalore, India, 2003), 119-125, Contemp. Math. 390, Amer. Math. Soc., Providence, RI (2005). MR 2187329 (2006h:19001)
  • 8. S. JOSE and R.A. RAO, A Fundamental Property of Suslin matrices, preprint 2007.
  • 9. R.A. RAO, The Bass-Quillen conjecture in dimension three but characteristic $ \not=2,3$ via a question of A. Suslin. Invent. Math. 93, 3, 609-618 (1988). MR 952284 (89d:13011)
  • 10. R.A. RAO, On completing unimodular polynomial vectors of length three. Trans. Amer. Math. Soc. 325, no. 1, 231-239 (1991). MR 991967 (91h:13008)
  • 11. R.A. RAO and W. VAN DER KALLEN, Improved stability for $ K_1$ and WMS$ _ d$ of a non-singular affine algebra. $ K$-theory (Strasbourg, 1992). Asterisque no. 226, 11, 411-420 (1994). MR 1317126 (96e:19001)
  • 12. R.A. RAO, An Abelian Group Structure on Orbits of ``Unimodular Squares'' in Dimension 3, Journal of Algebra 210, 216-224 (1998). MR 1656421 (99k:20103)
  • 13. M. ROITMAN, On stably extended projective modules over polynomial rings. Proc. Amer. Math. Soc. 97, no. 4, 585-589 (1986). MR 845969 (87f:13007)
  • 14. A.A. SUSLIN, On Stably Free Modules, Math. USSR Sbornik 31, 479-491 (1977). MR 0441949 (56:340)
  • 15. A.A. SUSLIN and L.N. VASERSTEIN, Serre's problem on projective modules over polynomial rings and algebraic $ K$-theory, Math. USSR Izv. 10, 937-1000 (1976). MR 0447245 (56:5560)
  • 16. R.G. SWAN, A cancellation theorem for projective modules in the metastable range. Invent. Math. 27, 23-43 (1974). MR 0376681 (51:12856)
  • 17. L.N. VASERSTEIN, Operations on orbits of unimodular vectors, Journal of Algebra 100, 456-461 (1986). MR 840588 (87j:13018)
  • 18. L.N. VASERSTEIN, Stable rank and dimensionality of topological spaces, Funktsional. Anal. i Prilozhen. 5, 17-27 (1971), translation in Functional Anal. Appl. 5, 102-110, 1971. MR 0284476 (44:1701)
  • 19. W. VAN DER KALLEN, A group structure on certain orbit sets of unimodular rows, Journal of Algebra 82, no. 2, 363-397 (1983). MR 704762 (85b:13014)
  • 20. W. VAN DER KALLEN, A module structure on certain orbit sets of unimodular rows, J. Pure Appl. Algebra 57, 657-663 (1975). MR 987316 (90b:18013)
  • 21. W. VAN DER KALLEN, From Mennicke symbols to Euler class groups. Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), 341-354, Tata Inst. Fund. Res. Stud. Math. 16, Tata Inst. Fund. Res., Bombay (2002). MR 1940672 (2003h:19006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13C10, 15A04, 19G12

Retrieve articles in all journals with MSC (2000): 13C10, 15A04, 19G12


Additional Information

Ravi A. Rao
Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Mumbai, India 400 005
Email: ravi@math.tifr.res.in

Selby Jose
Affiliation: Department of Mathematics, Ismail Yusuf College, Jogeshwari(E), Mumbai, India 400-060
Email: selbyjose@rediffmail.com

DOI: https://doi.org/10.1090/S0002-9939-07-09065-X
Keywords: Unimodular rows, Suslin matrix, elementary orbit
Received by editor(s): October 5, 2006
Received by editor(s) in revised form: January 8, 2007
Published electronically: December 27, 2007
Communicated by: Paul Goerss
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society