Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mean value of mixed exponential sums


Author: Huaning Liu
Journal: Proc. Amer. Math. Soc. 136 (2008), 1193-1203
MSC (2000): Primary 11L03, 11L05
DOI: https://doi.org/10.1090/S0002-9939-07-09075-2
Published electronically: December 18, 2007
MathSciNet review: 2367093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For integers $ q$, $ m$, $ n$, $ k$ with $ q,k\geq 1$, and Dirichlet character $ \chi\bmod q$, we define a mixed exponential sum

$\displaystyle C(m,n,k,\chi;q):= \mathop{{\sum}'}_{a=1}^q\chi(a)\hbox{e}\left(\frac{ma^k+na}{q}\right), $

where $ \displaystyle \hbox{e}(y)=\hbox{e}^{2\pi iy}$, and $ \sum'_{a}$ denotes the summation over all $ a$ with $ (a,q)=1$. The main purpose of this paper is to study the mean value of

$\displaystyle \sum_{\chi\bmod q}\mathop{{\sum}'}_{m=1}^q\left\vert C(m,n,k,\chi;q)\right\vert^4, $

and to give a related identity on the mean value of the general Kloosterman sum

$\displaystyle K(m,n,\chi;q):=\mathop{{\sum}'}_{a=1}^q\chi(a)\hbox{e}\left(\frac{ma +n\overline{a}}{q}\right), $

where $ a\overline{a} \equiv 1 \bmod q$.


References [Enhancements On Off] (What's this?)

  • 1. T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976. MR 0434929 (55:7892)
  • 2. S. Chowla, On Kloosterman's sum, Norske Vid. Selsk. Forh. (Trondheim), 40 (1967), pp. 70-72. MR 0228452 (37:4032)
  • 3. T. Cochrane and Z. Zheng, Pure and mixed exponential sums, Acta Arith., 91 (1999), pp. 249-278. MR 1735676 (2000k:11093)
  • 4. T. Cochrane and Z. Zheng, Exponential sums with rational function entries, Acta Arith., 95 (2000), pp. 67-95. MR 1787206 (2001g:11130)
  • 5. T. Cochrane and Z. Zheng, Bounds for certain exponential sums, Asian J. Math., 4 (2000), pp. 757-773. MR 1870657 (2002h:11072)
  • 6. T. Cochrane and Z. Zheng, Upper bounds on a two-term exponential sum, Sci. China Ser. A, 44 (2001), pp. 1003-1015. MR 1857555 (2002g:11125)
  • 7. T. Cochrane, Exponential sums modulo prime powers, Acta Arith., 101 (2002), pp. 131-149. MR 1880304 (2002i:11082)
  • 8. T. Cochrane and C. Pinner, An improved Mordell type bound for exponential sums, Proc. Amer. Math. Soc., 133 (2005), pp. 313-320. MR 2093050 (2005h:11179)
  • 9. T. Cochrane, J. Coffelt and C. Pinner, A further refinement of Mordell's bound on exponential sums, Acta Arith., 116 (2005), pp. 35-41. MR 2114903 (2006b:11100)
  • 10. T. Cochrane and C. Pinner, Using Stepanov's method for exponential sums involving rational functions, J. Number Theory, 116 (2006), pp. 270-292. MR 2195926 (2006j:11113)
  • 11. A. V. Malyshev, A generalization of Kloosterman sums and their estimates. (Russian), Vestnik Leningrad. Univ., 15 (1960), pp. 59-75. MR 0125084 (23:A2391)
  • 12. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), pp. 204-207. MR 0027006 (10:234e)
  • 13. W. Zhang, On the general Kloosterman sum and its fourth power mean, J. Number Theory, 104 (2004), pp. 156-161. MR 2021631 (2005e:11099)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11L03, 11L05

Retrieve articles in all journals with MSC (2000): 11L03, 11L05


Additional Information

Huaning Liu
Affiliation: Department of Mathematics, Northwest University, Xi’an, Shaanxi, People’s Republic of China
Email: hnliu@nwu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-07-09075-2
Keywords: Exponential sum, Kloosterman sum, mean value, identity.
Received by editor(s): July 26, 2006
Received by editor(s) in revised form: January 9, 2007
Published electronically: December 18, 2007
Additional Notes: This work was supported by the National Natural Science Foundation of China under Grant No.60472068 and No.10671155; Natural Science Foundation of Shaanxi province of China under Grant No.2006A04; and the Natural Science Foundation of the Education Department of Shaanxi Province of China under Grant No.06JK168.
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society