NORMS OF ELEMENTARY OPERATORS

HONG-KE DU, YUE-QING WANG, AND GUI-BAO GAO

(Communicated by Joseph A. Ball)

Abstract. Let A_i and B_i, $1 \leq i \leq n$, be bounded linear operators acting on a separable Hilbert space \mathcal{H}. In this note, we prove that $\sup \{ \| \sum_{i=1}^{n} A_i X B_i \| : X \in \mathcal{B}(\mathcal{H}), \| X \| \leq 1 \} = \sup \{ \| \sum_{i=1}^{n} A_i U B_i \| : U U^* = U^* U = I, U \in \mathcal{B}(\mathcal{H}) \}$. Moreover, we prove that there exists an operator X_0 with $\| X_0 \| = 1$ such that $\| \sum_{i=1}^{n} A_i X_0 B_i \| = \sup \{ \| \sum_{i=1}^{n} A_i X B_i \| : X \in \mathcal{B}(\mathcal{H}), \| X \| \leq 1 \}$ if and only if there exists a unitary $U_0 \in \mathcal{B}(\mathcal{H})$ such that $\| \sum_{i=1}^{n} A_i U_0 B_i \| = \sup \{ \| \sum_{i=1}^{n} A_i X B_i \| : X \in \mathcal{B}(\mathcal{H}), \| X \| \leq 1 \}$.

1. Introduction and statement of the main theorem

Let $\mathcal{B}(\mathcal{H})$ be the C^*-algebra of all bounded linear operators on a Hilbert space \mathcal{H}. The unit ball $\{ A : A \in \mathcal{B}(\mathcal{H}) \text{ and } \| A \| \leq 1 \}$ and the unitary group $\{ U : U \in \mathcal{B}(\mathcal{H}) \text{ and } U U^* = U^* U = I \}$ of $\mathcal{B}(\mathcal{H})$ are denoted, respectively, by $\mathcal{B}(\mathcal{H})_1$ and $\mathcal{U}(\mathcal{H})$. For $A_i, B_i \in \mathcal{B}(\mathcal{H})$, $i = 1, 2, \ldots, n$, the n-tuples \tilde{A} and \tilde{B} are defined, respectively, by $\tilde{A} = (A_1, A_2, \ldots, A_n)$ and $\tilde{B} = (B_1, B_2, \ldots, B_n)$.

The elementary operator $\delta_{\tilde{A}, \tilde{B}}$ on $\mathcal{B}(\mathcal{H})$ induced by \tilde{A} and \tilde{B} is defined by

$$\delta_{\tilde{A}, \tilde{B}} X = \sum_{i=1}^{n} A_i X B_i, \text{ for } X \in \mathcal{B}(\mathcal{H}).$$

The norm $\| \delta_{\tilde{A}, \tilde{B}} \|$ of the elementary operator $\delta_{\tilde{A}, \tilde{B}}$ is defined by

$$\| \delta_{\tilde{A}, \tilde{B}} \| = \sup \{ \| \sum_{i=1}^{n} A_i X B_i \| : X \in \mathcal{B}(\mathcal{H})_1 \}. $$

The elementary operator as an operator on the Banach space $\mathcal{B}(\mathcal{H})$ has attracted much attention of many mathematicians. Some interesting results about the spectra, the ranges and the norms of elementary operators have been obtained (see [1]-[5]).

About the discussion of the norms of elementary operators, one can trace back to Stampfli’s theorem in 1970 (see [6]).
Moreover, the quantity in the above equality is the same as

\[\sup \{ \| AX + XB \| : X \in \mathcal{B}(\mathcal{H})_1 \} = \min \{ \| A + \mu I \| + \| B - \mu I \| : \mu \in \mathbb{C} \}. \]

In the present paper, the inspiration originated from the main result obtained recently by Choi and Li in [1].

Theorem C-L (Theorem 2.1 in [1]). Let \(A, B \in \mathcal{B}(\mathcal{H}) \). Then

\[\sup \{ \| U^* A U + V^* B V \| : U, V \in \mathcal{U}(\mathcal{H}) \} = \min \{ \| A + \mu I \| + \| B - \mu I \| : \mu \in \mathbb{C} \}. \]

Moreover, the quantity in the above equality is the same as

\[\sup \{ \| AX + XB \| : X \in \mathcal{B}(\mathcal{H})_1 \}. \]

In this note, we shall concentrate on the norms of elementary operators. The main result in this paper is the following.

Theorem 1.1. Let \(A_1, \ldots, A_n, B_1, \ldots, B_n \in \mathcal{B}(\mathcal{H}) \) and let \(\delta_{\tilde{A}, \tilde{B}} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}) \) be defined by

\[\| \delta_{\tilde{A}, \tilde{B}}(X) \| = \sup_{U \in \mathcal{U}(\mathcal{H})} \| \tilde{A}, \tilde{B}^* \| \| \tilde{A}, \tilde{B} \| . \]

Moreover, there is a contraction \(X \in \mathcal{B}(\mathcal{H})_1 \) such that \(\| \delta_{\tilde{A}, \tilde{B}}(X) \| = \| \delta_{\tilde{A}, \tilde{B}} \| \) if and only if there is a unitary \(U \in \mathcal{U}(\mathcal{H}) \) such that \(\| \delta_{\tilde{A}, \tilde{B}}(U) \| = \| \delta_{\tilde{A}, \tilde{B}} \| . \)

An elementary operator \(\delta_{\tilde{A}, \tilde{B}} \) is said to be norm-attainable if there is a contraction \(X \in \mathcal{B}(\mathcal{H})_1 \) such that \(\| \delta_{\tilde{A}, \tilde{B}}(X) \| = \| \delta_{\tilde{A}, \tilde{B}} \| . \)

By Theorem 1.1 and Theorem S, one can deduce Theorem C-L as follows. In fact, in Theorem 1.1, let \(n = 2, A_1 = A, A_2 = I, B_1 = I \) and \(B_2 = B \). Then

\[\sup \{ \| AX + XB \| : X \in \mathcal{B}(\mathcal{H}), \| X \| \leq 1 \} = \sup \{ \| AU + UB \| : U \in \mathcal{U}(\mathcal{H}) \}. \]

It is clear that

\[\sup \{ \| AU + UB \| : U \in \mathcal{U}(\mathcal{H}) \} = \sup \{ \| UV^* + UV^* B \| : U, V \in \mathcal{U}(\mathcal{H}) \} = \sup \{ \| U^* AU + V^* BV \| : U, V \in \mathcal{U}(\mathcal{H}) \}. \]

From Theorem S, we have

\[\sup \{ \| AX + XB \| : X \in \mathcal{B}(\mathcal{H})_1 \} = \min \{ \| A + \mu I \| + \| B - \mu I \| : \mu \in \mathbb{C} \}. \]

Hence,

\[\sup \{ \| U^* AU + V^* BV \| : U, V \in \mathcal{U}(\mathcal{H}) \} = \min \{ \| A + \mu I \| + \| B - \mu I \| : \mu \in \mathbb{C} \}. \]

2. **Proof of the Main Theorem and Auxiliary Results**

In this section, we begin with some notation and terminology.

An operator \(A \in \mathcal{B}(\mathcal{H}) \) is said to be positive if \((Ax, x) \geq 0 \) for all \(x \in \mathcal{H} \). If \(A \) is positive, then the unique positive square root of \(A \) is denoted by \(A^\frac{1}{2} \). The spectrum, the null-space and the range of \(A \in \mathcal{B}(\mathcal{H}) \) are denoted by \(\sigma(A) \), \(\mathcal{N}(A) \) and \(\mathcal{R}(A) \), respectively. An operator \(V \in \mathcal{B}(\mathcal{H}) \) is said to be an isometry (or co-isometry) if \(V^* V = I \) (or \(VV^* = I \)). For a subspace \(M \subseteq \mathcal{H} \), if \(\dim M \) is infinite, then \(M \) is said to be infinite co-dimensional, where \(\dim K \) denotes the dimension of a subspace \(K \subseteq \mathcal{H} \) and \(K^\perp \) denotes the orthogonal complement of \(K \). The orthogonal projection on \(M \) is denoted by \(P_M \).

To complete the proof of Theorem 1.1, we need some auxiliary results.
Lemma 2.1. If $A \in \mathcal{B}(\mathcal{H})_1$, then there exist two isometries or co-isometries V_1 and V_2 in $\mathcal{B}(\mathcal{H})_1$ such that

$$A = \frac{1}{2}(V_1 + V_2).$$

Moreover, if $\dim N(A) = \dim N(A^*)$, then V_1 and V_2 can be taken to be unitaries.

Proof. Let $A \in \mathcal{B}(\mathcal{H})_1$ and $A = VP$ be the polar decomposition of A. Since $A \in \mathcal{B}(\mathcal{H})_1$, P is a positive contraction in $\mathcal{B}(\mathcal{H})_1$, so $I - P^2$ is also a positive contraction in $\mathcal{B}(\mathcal{H})_1$. Define operators U_1 and U_2 by

$$U_1 = P + i(I - P^2)^{\frac{1}{2}} \quad \text{and} \quad U_2 = P - i(I - P^2)^{\frac{1}{2}},$$

respectively. Noting that $U_1^* = U_2$ and directly checking, $U_1U_1^* = U_1^*U_1 = I$ and $U_2U_2^* = U_2^*U_2 = I$, so U_1 and U_2 are unitaries and

$$P = \frac{1}{2}(U_1 + U_2).$$

If $\dim N(A) < \dim N(A^*)$, then V can be taken to be an isometry. Take $V_1 = VU_1$ and $V_2 = VU_2$. Then V_1 and V_2 are isometries and

$$A = VP = V\left(\frac{1}{2}(U_1 + U_2)\right) = \frac{1}{2}(V_1 + V_2).$$

If $\dim N(A) > \dim N(A^*)$, then V can taken to be a co-isometry. So V_1 and V_2 in (4) can be taken to be co-isometries.

If $\dim N(A) = \dim N(A^*)$, then V can be taken to be a unitary. So V_1 and V_2 in (4) can be taken to be unitaries. \hfill \Box

Corollary 2.2. If the elementary operator $\delta_{A, B}$ is norm-attainable, then there exists an isometry or a co-isometry V_0 such that

$$\| \delta_{A, B} \| = \left\| \sum_{i=1}^{n} A_i V_0 B_i \right\|.$$

Proof. If the elementary operator $\delta_{A, B}$ is norm-attainable, then there exists an operator $X_0 \in \mathcal{B}(\mathcal{H})_1$ such that

$$\| \delta_{A, B} \| = \left\| \sum_{i=1}^{n} A_i X_0 B_i \right\|.$$

To complete the proof, it is sufficient to show that X_0 can be represented as an average of two isometries or two co-isometries. By (3) in Lemma 2.1, it is obvious. \hfill \Box

Corollary 2.3. If $A \in \mathcal{B}(\mathcal{H})_1$ is of finite rank, then there exist two unitaries U_1 and U_2 in $\mathcal{U}(\mathcal{H})$ such that

$$A = \frac{1}{2}(U_1 + U_2).$$

Proof. Since $A \in \mathcal{B}(\mathcal{H})_1$ is of finite rank, which implies that $\dim N(A) = \dim N(A^*)$, the corollary is evident by Lemma 2.1. \hfill \Box

An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be norm-attainable if there exists a unit vector $x_0 \in \mathcal{H}$ such that $\|Ax_0\| = \|A\|$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 2.4. If $A \in \mathcal{B}(\mathcal{H})$ is not norm-attainable, then there exists an infinite sequence $\{x_n\}_{n=1}^{\infty}$ of orthonormal vectors such that $\lim_{n \to \infty} \|Ax_n\| = \|A\|$, $Ax_i \neq 0$ for all $1 \leq i < \infty$ and $Ax_i \perp Ax_j$, $i \neq j$.

Proof. If $A = UP$ is the polar decomposition of A, where U is a partial isometry from $\mathcal{R}(A^*)$ onto $\overline{\mathcal{R}(A)}$, then $\|Ax\| = \|Px\|$ for all $x \in \mathcal{H}$. This shows that A is norm-attainable if and only if P is norm-attainable. Denote the spectral decomposition of P by

$$P = \int_0^\|P\| \lambda dE_\lambda$$

and suppose A is not norm-attainable. Then P is not norm-attainable either. Hence, $\|P\|$ is not an isolated point of $\sigma(P)$. So we can choose a sequence $\{\alpha_n\}$ of positive numbers such that $\{\alpha_n\}$ is strictly increasing, $\lim_{n \to \infty} \alpha_n = \|P\|$ and the spectral projection $E_n = E((\alpha_n, \alpha_{n+1})) \neq 0$, $1 \leq n < \infty$. For this situation, $[\alpha_n, \alpha_{n+1}) \cap \sigma(P) \neq \emptyset$ and $E_n \mathcal{H}$ is an invariant subspace of P for $1 \leq n < \infty$.

Taking a unit vector $x_n \in E_n \mathcal{H}$, it is clear that $\{x_n\}$ is a sequence of orthonormal vectors with $A^*Ax_n = P^2x_n \in E_n \mathcal{H}$; thus $(A^*Ax_i, x_j) = 0$ since $E_iE_j = E_jE_i = 0$ for $i \neq j$, $1 \leq i, j < \infty$. So $(Ax_i, Ax_j) = 0$ for $i \neq j$, $1 \leq i, j < \infty$. In this case,

$$\|Ax_n\|^2 = (A^*Ax_n, x_n) = (P^2x_n, x_n) = \left(\int_0^\|P\| \lambda^2 dE_\lambda x_n, x_n\right)$$

$$= \left(\int_{\alpha_n}^{\alpha_{n+1}} \lambda^2 dE_\lambda x_n, x_n\right) \geq \alpha_n^2 \rightarrow \|P\|^2 = \|A\|^2.$$

Hence,

$$\lim_{n \to \infty} \|Ax_n\| = \|A\| \quad \Box$$

Lemma 2.5. For an operator $A \in \mathcal{B}(\mathcal{H})$, the operator A is norm-attainable if and only if its adjoint A^* is norm-attainable.

Proof. It is enough to show that $A \neq 0$ is norm-attainable implies that A^* is norm-attainable. If A is norm-attainable, then there exists a unit vector x_0 such that $\|Ax_0\| = \|A\|$. That is,

$$A^*Ax_0 = \|A\|^2 x_0.$$

Denote $y_0 = \frac{Ax_0}{\|A\|}$. Then y_0 is a unit vector and $\|A^*y_0\| = \|A\| = \|A^*\|$. Hence A^* is norm-attainable. \hfill \Box

Lemma 2.6. Let V be an isometry and let \mathcal{M} be an infinite co-dimensional subspace of \mathcal{H}. If the restriction of V on \mathcal{M} is denoted by $V|_{\mathcal{M}}$, then $\dim \mathcal{N}(V|_{\mathcal{M}}) = \dim \mathcal{N}((V|_{\mathcal{M}})^*) = \infty$.

Proof. It is clear that $\dim \mathcal{N}(V|_{\mathcal{M}}) = \infty$.

By the assumption that V is an isometry, if $x \in \mathcal{M}$ and $y \in \mathcal{M}^\perp$, then $(Vx, Vy) = (V^*Vx, y) = (x, y) = 0$. Hence $\mathcal{R}(V|_{\mathcal{M}}) \perp \mathcal{R}(V|_{\mathcal{M}^\perp})$. Observing that $\dim \mathcal{R}(V|_{\mathcal{M}^\perp}) = \dim \mathcal{M}^\perp = \infty$, so $\dim \mathcal{N}((V|_{\mathcal{M}})^*) \geq \dim \mathcal{R}(V|_{\mathcal{M}^\perp}) = \infty$. Therefore

$$\dim \mathcal{N}(V|_{\mathcal{M}}) = \dim \mathcal{N}((V|_{\mathcal{M}})^*) = \infty. \quad \Box$$
Lemma 2.7. Let \(\{y_i\}_{i=1}^{\infty} \) be a sequence of unit vectors with \(|(y_i, y_j)| < \frac{1}{2\max\{i, j\}+4} \) for \(i \neq j, 1 \leq i, j < \infty \). Then, for each \(k \in \mathbb{N} \), \(y_k \) is not contained in the closed subspace spanned by \(\{y_j, j \neq k\} \).

Proof. Let \(\{y_i\}_{i=1}^{\infty} \) be a sequence of unit vectors with \(|(y_i, y_j)| < \frac{1}{2\max\{i, j\}+4} \) for \(i \neq j \). Firstly, we shall show that if \(y_{i_0} = \sum_{j \neq i_0} \lambda_j y_j \), then the set \(\{ |\lambda_j| : j \neq i_0 \} \) is bounded. Moreover, \(|\lambda_j| \leq 4, 1 \leq j < \infty \).

On the contrary, assume that there exists a \(k_0 \) with \(|\lambda_{k_0}| > 4 \). If \(\epsilon < \frac{1}{2} \) is small enough, then there exists an \(n_0 \) with \(n_0 > k_0 \) such that

\[
\|y_{i_0} - \sum_{j \neq i_0, j = 1}^{n_0} \lambda_j y_j \| < \epsilon.
\]

Denote

\[
x_{i_0, n_0} = y_{i_0} - \sum_{j \neq i_0, j = 1}^{n_0} \lambda_j y_j
\]

and \(|\lambda_{k_0}| = \max\{|\lambda_j| : 1 \leq j \leq n_0\} \), where \(1 \leq k_0 \leq n_0 \). Then \(y_{i_0} = \sum_{j \neq i_0, j = 1}^{n_0} \lambda_j y_j + x_{i_0, n_0} \) and \(|\lambda_{k_0}| > 4 \). So

\[
|(y_{i_0}, y_{k_0})| \geq \Big(\sum_{j \neq i_0, j = 1}^{n_0} \lambda_j y_j + x_{i_0, n_0}, y_{k_0} \Big) \geq |\lambda_{k_0}| - \left(\sum_{j = 1, j \neq i_0, j \neq k_0}^{n_0} \frac{1}{2\max\{k_0, j\}+4} |\lambda_j| + \epsilon \right)
\]

\[
\geq |\lambda_{k_0}| \left(1 - \sum_{j = 1, j \neq i_0, j \neq k_0}^{n_0} \frac{1}{2\max\{k_0, j\}+4} \right) - \epsilon
\]

\[
\geq \frac{1}{2} |\lambda_{k_0}| - \epsilon
\]

\[
\geq \frac{1}{4} |\lambda_{k_0}|.
\]

Moreover,

\[
\frac{1}{2\max\{i_0, k_0\}+4} \geq |(y_{i_0}, y_{k_0})| \geq \frac{1}{4} |\lambda_{k_0}| \geq 1.
\]

This is a contradiction.

Secondly, we shall show that, for \(k \in \mathbb{N} \), \(y_k \) is not contained in the closed subspace spanned by \(\{y_j, j \neq k\} \).

On the contrary again, assume that there exists a vector \(y_{k_0} \) such that

\[
y_{k_0} = \sum_{j = 1, j \neq k_0} \lambda_j y_j.
\]
Observing that $|\lambda_j| \leq 4$ for $j \neq k_0$, then
\[
1 = (y_{k_0}, y_{k_0}) = |\left(\sum_{j=1, j \neq k_0} \lambda_j y_j, y_{k_0} \right)| = |\left(\sum_{j=1, j \neq k_0} (\lambda_j y_j, y_{k_0}) \right)| \leq \sum_{j=1, j \neq k_0} \frac{1}{2^{\max\{k_0, j\}+4}} |\lambda_j| \leq 4\left(\frac{1}{2^{k_0}} \left(k_0^2 + \frac{1}{2^{k_0}} \right) \right) \leq \frac{1}{2} (|\lambda_k| \leq 4).
\]
This is a contradiction. \qed

From Lemma 2.7, we have the following definition: A sequence $\{y_i\}_{i=1}^\infty$ of unit vectors is said to be almost-orthonormal if $|(y_i, y_j)| < \frac{1}{2^{\max\{i, j\}+1}}$ for all $1 \leq i, j < \infty$ and $i \neq j$.

By Lemma 2.7, all the vectors in an almost-orthonormal sequence are linearly independent.

Lemma 2.8. Let $\{x_i\}_{i=1}^\infty \subset \mathcal{H}$ be an infinite sequence of orthonormal vectors. If $\{y_j\}_{j=1}^n \subset \mathcal{H}$ is a finite sequence, then, for an arbitrary $\epsilon > 0$, there exists a positive integer i_0 such that $|(y_j, x_i)| < \epsilon$, for all $1 \leq j \leq n$ and $i > i_0$.

Proof. This is obvious. \qed

We shall devote the next section to a proof of Theorem 1.1.

Proof of Theorem 1.1. First, we shall show that
\[
\|\delta_{\tilde{A}, \tilde{B}}\| = \sup \{\|\sum_{i=1}^n A_i U B_i\| : U \in \mathcal{U}(\mathcal{H})\}.
\]

By the definition of the operator norm, there exists an operator sequence $\{X_m\}_{m=1}^\infty \subset \mathcal{B}(\mathcal{H})_1$ such that
\[
\|\delta_{\tilde{A}, \tilde{B}}\| = \lim_{m \to \infty} \|\delta_{\tilde{A}, \tilde{B}} X_m\| = \lim_{m \to \infty} \|\sum_{i=1}^n A_i X_m B_i\|.
\]

For each $m \in \mathbb{N}$, there exists a unit vector $x_m \in \mathcal{H}$ such that
\[
\|\sum_{i=1}^n A_i X_m B_i\| - \|\sum_{i=1}^n A_i X_m B_i x_m\| < \frac{1}{m}, 1 \leq i \leq n.
\]

Define an operator X^0_m for $m \in \mathbb{N}$ by
\[
\begin{cases}
X^0_m B_i x_m = X_m B_i x_m, & 1 \leq i \leq n; \\
X^0_m y = 0, & \text{if } y \in (\mathcal{V}\{B_i x_m, 1 \leq i \leq n\})^\perp.
\end{cases}
\]

It is obvious that $\|X^0_m\| \leq \|X_m\| \leq 1$. That is, $X^0_m \in \mathcal{B}(\mathcal{H})_1$ and
\[
\|\sum_{i=1}^n A_i X_m B_i\| - \|\sum_{i=1}^n A_i X^0_m B_i x_m\| < \frac{1}{m}, m \in \mathbb{N}.
\]
From the definition of X^0_m, X^0_m is of finite rank and $X^0_m \in \mathcal{B}(\mathcal{H})_1$, so by Corollary 2.3 there exist two unitaries $U^{(1)}_m$ and $U^{(2)}_m$ for each $m \in \mathbb{N}$ such that

$$X^0_m = \frac{1}{2}(U^{(1)}_m + U^{(2)}_m), \text{ for } m \in \mathbb{N}.$$

Observing that

$$\| \sum_{i=1}^{n} A_i X^0_m B_i x_m \| = \| \sum_{i=1}^{n} \frac{1}{2} A_i (U^{(1)}_m + U^{(2)}_m) B_i x_m \|$$

$$\leq \frac{1}{2} (\| \sum_{i=1}^{n} A_i U^{(1)}_m B_i x_m \| + \| \sum_{i=1}^{n} A_i U^{(2)}_m B_i x_m \|)$$

for $m \in \mathbb{N}$, this shows that at least one of the numbers $\| \sum_{i=1}^{n} A_i U^{(1)}_m B_i x_m \|$ and $\| \sum_{i=1}^{n} A_i U^{(2)}_m B_i x_m \|$ is greater than or equal to $\| \sum_{i=1}^{n} A_i X^0_m B_i x_m \|$. Without loss of generality, we can assume that

$$\| \sum_{i=1}^{n} A_i U^{(1)}_m B_i x_m \| \geq \| \sum_{i=1}^{n} A_i X^0_m B_i x_m \|, \text{ for } m \in \mathbb{N}.$$

Therefore,

$$\| \delta_{\tilde{A}, \tilde{B}} \| \geq \| \sum_{i=1}^{n} A_i U^{(1)}_m B_i \|$$

$$\geq \| \sum_{i=1}^{n} A_i U^{(1)}_m B_i x_m \|$$

$$\geq \| \sum_{i=1}^{n} A_i X^0_m B_i x_m \|$$

$$\geq \| \sum_{i=1}^{n} A_i X^0_m B_i \| - \frac{1}{m}.$$

So

$$\| \delta_{\tilde{A}, \tilde{B}} \| \geq \lim_{m \to \infty} \| \sum_{i=1}^{n} A_i U^{(1)}_m B_i \|$$

$$\geq \lim_{m \to \infty} (\| \sum_{i=1}^{n} A_i X^0_m B_i \| - \frac{1}{m})$$

$$= \lim_{m \to \infty} \| \sum_{i=1}^{n} A_i X^0_m B_i \|$$

$$= \| \delta_{\tilde{A}, \tilde{B}} \|.$$

That is,

$$\| \delta_{\tilde{A}, \tilde{B}} \| = \lim_{m \to \infty} \| \sum_{i=1}^{n} A_i U^{(1)}_m B_i \|.$$

Second, we shall prove that there is a contraction $X \in \mathcal{B}(\mathcal{H})_1$ such that $\| \delta_{\tilde{A}, \tilde{B}}(X) \| = \| \delta_{\tilde{A}, \tilde{B}} \|$ if and only if there is a unitary $U \in \mathcal{U}(\mathcal{H})$ such that $\| \delta_{\tilde{A}, \tilde{B}}(U) \| = \| \delta_{\tilde{A}, \tilde{B}} \|$.

"\Leftarrow" is obvious.
It is enough to consider that \(\Rightarrow \).
For convenience, we divide the part of the proof into three cases.

Case 1. There exists an operator \(X_0 \in \mathcal{B}(\mathcal{H})_1 \) with \(\dim \mathcal{N}(X_0) = \dim \mathcal{N}(X_0^*) \) such that

\[
\| \delta_{A,B} \| = \| \delta_{A,B} X_0 \| = \left\| \sum_{i=1}^{n} A_i X_0 B_i \right\|.
\]

In this case, by Lemma 2.1, there exist two unitaries \(U_0^1 \) and \(U_0^2 \) such that

\[
X_0 = \frac{1}{2}(U_0^1 + U_0^2).
\]

Therefore,

\[
\| \delta_{A,B} \| = \| \delta_{A,B} X_0 \| = \| \delta_{A,B} X_0 U_0^1 + \delta_{A,B} X_0 U_0^2 \| \\
\leq \frac{1}{2} (\| \delta_{A,B} U_0^1 \| + \| \delta_{A,B} U_0^2 \|) \\
\leq \| \delta_{A,B} \|.
\]

So \(\frac{1}{2} (\| \delta_{A,B} U_0^1 \| + \| \delta_{A,B} U_0^2 \|)) = \| \delta_{A,B} \| \). That is,

\[
\| \delta_{A,B} U_0^1 \| = \| \delta_{A,B} U_0^2 \| = \| \delta_{A,B} \|.
\]

Case 2. There exists an operator \(X_0 \in \mathcal{B}(\mathcal{H})_1 \) such that

\[
\| \delta_{A,B} \| = \| \delta_{A,B} X_0 \| = \left\| \sum_{i=1}^{n} A_i X_0 B_i \right\|
\]

and \(\sum_{i=1}^{n} A_i X_0 B_i \in \mathcal{B}(\mathcal{H}) \) is also norm-attainable.

In such a case, there exists a unit vector \(x_0 \in \mathcal{B}(\mathcal{H}) \) such that

\[
\left\| \sum_{i=1}^{n} A_i X_0 B_i x_0 \right\| = \left\| \sum_{i=1}^{n} A_i X_0 B_i \right\|.
\]

Define an operator \(X_0^0 \) by

\[
\begin{align*}
X_0^0 B_i x_0 & = X_0 B_i x_0, \quad 1 \leq i \leq n; \\
X_0^0 y & = 0, \quad y \in (\{ B_i x_0, 1 \leq i \leq n \})^\perp.
\end{align*}
\]

It is obvious that \(\| X_0^0 \| \leq \| X_0 \| \leq 1 \), so \(X_0^0 \in \mathcal{B}(\mathcal{H})_1 \). In this case,

\[
\| \delta_{A,B} \| = \left\| \sum_{i=1}^{n} A_i X_0 B_i \right\| \\
= \left\| \sum_{i=1}^{n} A_i X_0 B_i x_0 \right\| \\
= \left\| \sum_{i=1}^{n} A_i X_0^0 B_i x_0 \right\| \\
\leq \left\| \sum_{i=1}^{n} A_i X_0^0 B_i \right\| \\
\leq \| \delta_{A,B} \|.
\]
That is, \(\| \delta_{A, B} \| = \| \sum_{i=1}^{n} A_{i}X_{0}B_{i} \| \). By the definition of \(X_{0} \), \(X_{0} \) is of finite rank. Similar to the proof of Case 1 and by Corollary 2.3, there exists a unitary \(U_{00} \) such that \(\| \delta_{A, B} \| = \| \sum_{i=1}^{n} A_{i}U_{00}B_{i} \| \).

Case 3. There exists an operator \(X_{0} \in \mathcal{B}(\mathcal{H}) \) with \(\dim \mathcal{N}(X_{0}) \neq \dim \mathcal{N}(X_{0}') \) and \(\sum_{i=1}^{n} A_{i}X_{0}B_{i} \in \mathcal{B}(\mathcal{H}) \) is not norm-attainable such that

\[
\| \delta_{A, B} \| = \| \delta_{A, B}X_{0} \| = \| \sum_{i=1}^{n} A_{i}X_{0}B_{i} \| .
\]

In this case, if \(\dim \mathcal{N}(X_{0}) < \dim \mathcal{N}(X_{0}') \), by Lemma 2.1, we can assume that there exists an isometry \(V_{0} \) such that

\[
\| \delta_{A, B} \| = \| \delta_{A, B}V_{0} \| = \| \sum_{i=1}^{n} A_{i}V_{0}B_{i} \| .
\]

If \(\sum_{i=1}^{n} A_{i}V_{0}B_{i} \in \mathcal{B}(\mathcal{H}) \) is norm-attainable, by Case 2, there is nothing to do. So, in the next case, we assume that the operator \(\sum_{i=1}^{n} A_{i}V_{0}B_{i} \in \mathcal{B}(\mathcal{H}) \) is not norm-attainable.

In this case, by Lemma 2.4, there exists an orthonormal sequence \(\{x_{m}\}_{m=1}^{\infty} \subseteq \mathcal{R}(\sum_{i=1}^{n} B_{i}^{*}V_{0}A_{i}^{*}) \) of vectors such that

\[
\lim_{m \to \infty} \| \sum_{i=1}^{n} A_{i}V_{0}B_{i}x_{m} \| = \| \sum_{i=1}^{n} A_{i}V_{0}B_{i} \| ,
\]

and \(\sum_{i=1}^{n} A_{i}V_{0}B_{i}x_{j} \perp \sum_{i=1}^{n} A_{i}V_{0}B_{i}x_{k}, 1 \leq j, k < \infty, \) and \(j \neq k \).

Observing that if \(\| \delta_{A, B} \| = 0 \), the discussion is trivial, so we assume that \(\| \delta_{A, B} \| \neq 0 \) in the next case. If \(\| \delta_{A, B} \| \neq 0 \), by Lemma 2.4, there exist a positive number \(\alpha > 0 \) and \(m_{0} \in \mathbb{N} \) such that \(\| \sum_{i=1}^{n} A_{i}V_{0}B_{i}x_{m} \| > \alpha \) for each \(m > m_{0} \) and \(\sum_{i=1}^{n} A_{i}V_{0}B_{i}x_{m}, 1 \leq m < \infty \) is not contained in a finite-dimensional subspace of \(\mathcal{H} \). This shows that \(\{B_{i}x_{m}\}_{1 \leq i \leq n, 1 \leq m < \infty} \) is not contained in a finite-dimensional subspace of \(\mathcal{H} \). Furthermore, if \(\| \delta_{A, B} \| \neq 0 \), then there does not exist a subsequence \(\{z_{k}\}_{k=1}^{\infty} \subseteq \{x_{m}\}_{m=1}^{\infty} \) such that \(\lim_{k \to \infty} B_{i}z_{k} = 0 \) for all \(1 \leq i \leq n \). This implies that there exist a subsequence \(\{y_{j}\}_{j=1}^{\infty} \subseteq \{x_{m}\}_{m=1}^{\infty} \) and \(1 \leq i_{0} \leq n \) such that \(\{B_{i_{0}}y_{j}\}_{j=1}^{\infty} \) is bounded below. Without loss of generality, we can assume that \(\{x_{m}\} = \{y_{j}\} \) and \(i_{0} = 1 \). Hence, \(\{B_{1}x_{m}\}_{m=1}^{\infty} \) is bounded below. That is, there exists a \(\delta > 0 \) such that \(\|B_{1}x_{m}\| > \delta \) for all \(1 \leq m < \infty \).

Since \(\|B_{1}x_{m}\| > \delta \), we have

\[
\left| \frac{B_{1}x_{i}}{\|B_{1}x_{i}\|} \cdot \frac{B_{1}x_{j}}{\|B_{1}x_{j}\|} \right| \leq \delta^{-2} \left| \frac{B_{1}^{*}B_{1}x_{i}, x_{j}}{\|B_{1}^{*}B_{1}x_{i}\|\|B_{1}x_{j}\|} \right| .
\]

Moreover, by Lemma 2.8, there exists a subsequence \(\{x_{m_{j}}\}_{j=1}^{\infty} \subseteq \{x_{m}\}_{m=1}^{\infty} \) such that

\[
\left| \frac{B_{1}x_{m_{j}}}{\|B_{1}x_{m_{j}}\|} \cdot \frac{B_{1}x_{m_{k}}}{\|B_{1}x_{m_{k}}\|} \right| < \frac{1}{2^{\text{max}(j,k)+4}},
\]

since \(\{x_{m}\}_{m=1}^{\infty} \) is an infinite orthonormal sequence. This means that \(\{ \frac{B_{1}x_{m_{j}}}{\|B_{1}x_{m_{j}}\|} \}_{j=1}^{\infty} \) is almost orthonormal. For the sake of convenience, we can think of the subsequence \(\{x_{m_{j}}\}_{j=1}^{\infty} \) as being the same as the sequence \(\{x_{m}\}_{m=1}^{\infty} \). By Lemma 2.7, \(B_{1}x_{m}, 1 \leq m < \infty \), are not contained in the closed subspace spanned by \(\{B_{1}x_{2m-1}\}_{m=1}^{\infty} \). This shows that the closed subspace spanned by \(\{B_{1}x_{2m-1}\}_{m=1}^{\infty} \) is infinite co-dimen-

Denote by P the orthogonal projection on the closed subspace $\bigvee \{ B_1 x_{2m-1} \}_{m=1}^{\infty}$. Then $P^\perp \mathcal{H}$ is an infinite-dimensional subspace.

Next, we shall divide the remainder of the proof into two subcases.

Subcase 1. Suppose that there exists a subsequence $\{ z_k \}_{k=1}^{\infty} \subseteq \{ x_{2m-1} \}_{m=1}^{\infty}$ such that $P^\perp B_1 z_k \to 0$ as $k \to \infty$ for every $2 \leq i \leq n$. Denote by \mathcal{M} the closed subspace $\bigvee \{ B_1 z_k : 1 \leq k \leq \infty \}$. Since $\bigvee \{ B_1 z_k : 1 \leq k \leq \infty \} \subseteq \bigvee \{ B_1 x_{2m-1} : 1 \leq m \leq \infty \}$, \mathcal{M} is infinite co-dimensional. Define $D_0 := V_0 P$. It is clear that $\| D_0 \| \leq \| V_0 \| = 1$.

Observing that

$$\lim_{k \to \infty} \| \sum_{i=1}^{n} A_i D_0 B_i z_k \|$$

$$= \lim_{k \to \infty} \| \sum_{i=1}^{n} A_i V_0 P B_i z_k \|$$

$$= \lim_{k \to \infty} \| \sum_{i=1}^{n} A_i V_0 P B_i z_k + \sum_{i=2}^{n} A_i V_0 P^\perp B_i z_k \|$$

$$= \lim_{k \to \infty} \| \sum_{i=1}^{n} A_i V_0 P B_i z_k + \sum_{i=1}^{n} A_i V_0 P^\perp B_i z_k \|$$

$$= \lim_{k \to \infty} \| \sum_{i=1}^{n} A_i V_0 B_i z_k \|$$

$$= \lim_{m \to \infty} \| \sum_{i=1}^{n} A_i V_0 B_i x_{2m-1} \|$$

$$= \left\| \sum_{i=1}^{n} A_i V_0 B_i \right\| = \| \delta_{A,B} \| ,$$

then

$$\| \sum_{i=1}^{n} A_i D_0 B_i \| = \| \delta_{A,B} \| .$$

From the definition of D_0, $\dim \mathcal{N}(D_0) = \dim \mathcal{N}(D_0^\ast) = \infty$ by Lemma 2.6. Furthermore, by Case 1, there exists a unitary U_0 such that

$$\| \sum_{i=1}^{n} A_i U_0 B_i \| = \| \delta_{A,B} \| .$$

Subcase 2. Assume that there does not exist a subsequence $\{ z_k \}_{k=1}^{\infty} \subseteq \{ x_{2m-1} \}_{m=1}^{\infty}$ such that $P^\perp B_1 z_k \to 0$ as $k \to \infty$ for every $2 \leq i \leq n$. Then it is obvious that $\bigvee \{ P^\perp B_i z_k : 2 \leq i \leq n, 1 \leq k < \infty \}$ is infinite dimensional. Denote $C_i = P^\perp B_i Q$, $2 \leq i \leq n$. In such a case, instead of (B_1, B_2, \ldots, B_n), we use (C_2, C_3, \ldots, C_n) and repeat the programme as Subcase 1. Then in at most by $n - 1$ steps we can get a subsequence $\{ y_l \}_{l=1}^{\infty} \subseteq \{ x_{2m-1} \}_{m=1}^{\infty}$ such that the closed subspace $\bigvee \{ B_1 y_l : 1 \leq i \leq n_0, 1 \leq l < \infty \}$ is infinite co-dimensional and $P_{\lambda A_1} B_j y_l \to 0$, as $l \to \infty$ and $n_0 < j \leq n$, where it is necessary that we can change the order of the n-tuple
(B_1, B_2, \ldots, B_n) and let \(M_1 \) denote the closed subspace
\[
\vee \{ B_i y_l : 1 \leq i \leq n_0, 1 \leq l < \infty \}.
\]

Similar to Subcase 1, define
\[
D^2_0 := V_0 P_{M_1}.
\]
Then
\[
\lim_{l \to \infty} \| \sum_{i=1}^{n} A_i D^2_0 B_i y_l \| = \lim_{l \to \infty} \| \sum_{i=1}^{n} A_i V_0 P_{M_1} B_i y_l \|
= \lim_{l \to \infty} \| \sum_{i=1}^{n} A_i V_0 P_{M_1} B_i y_l + \sum_{i=n_0+1}^{n} A_i V_0 P_{M_1} B_i y_l \|
= \lim_{l \to \infty} \| \sum_{i=1}^{n} A_i V_0 B_i y_l \|
= \lim_{m \to \infty} \| \sum_{i=1}^{m} A_i V_0 B_i x_{2m-1} \| = \| \sum_{i=1}^{n} A_i V_0 B_i \| = \| \delta_{\tilde{A}, \tilde{B}} \|.
\]

So there exists a unitary \(U_0 \) such that
\[
\| \sum_{i=1}^{n} A_i U_0 B_i \| = \| \delta_{\tilde{A}, \tilde{B}} \|.
\]

If \(\dim \mathcal{N}(X_0) > \dim \mathcal{N}(X_0^*) \), by Lemma 2.5, we shall consider the operator
\[
\sum_{i=1}^{n} B_i^* X_0 A_i^*
\]
by an argument similar to the above. Then there exists a unitary \(W \) such that
\[
\| \delta_{\tilde{A}, \tilde{B}} \| = \| \sum_{i=1}^{n} B_i^* X_0 A_i^* \| = \| \sum_{i=1}^{n} B_i^* W A_i^* \| = \| \sum_{i=1}^{n} A_i W^* B_i \|.
\]

The proof is completed. \qed

Acknowledgments

The authors are very grateful to one of the referees of our paper who in several rounds of revisions invested a huge amount of his/her time on our manuscript and for his/her suggestions and comments that have improved the readability of the article and have brought reference [6] to the attention of the authors. In particular, the research problem in the paper was suggested by the referee and Corollary 2.2 was shown to the authors in the first referee report.

References

[4] B.P. Duggal, Range-kernel orthogonality of the elementary operator $X \rightarrow \sum_{i=1}^{n} A_i X B_i - X$, Linear Algebra and Appl. 337(2001), 79-86. MR1856852 (2002i:47044)

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China

E-mail address: hkdu@snnu.edu.cn

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China

E-mail address: wangyq@163.com

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China

E-mail address: gaoguibao@stu.snnu.edu.cn