ON THE COMPACTNESS OF THE PRODUCT OF HANKEL OPERATORS ON THE SPHERE

JINGBO XIA

(Communicated by Joseph A. Ball)

Abstract. Consider Hankel operators H_ϕ and H_ψ on the unit sphere in \mathbb{C}^n. If $n = 1$, then a necessary condition for $H_\phi^*H_\psi$ to be compact is $\lim_{|z| \uparrow 1} \|H_\phi k_z\|\|H_\psi k_z\| = 0$. We show that when $n \geq 2$, this condition is no longer necessary for $H_\phi^*H_\psi$ to be compact.

1. Introduction

Let S denote the unit sphere $\{z \in \mathbb{C}^n : |z| = 1\}$ in \mathbb{C}^n. Let σ be the positive, regular Borel measure on S which is invariant under the orthogonal group $O(2n)$, i.e., the group of isometries on $\mathbb{C}^n \cong \mathbb{R}^{2n}$ which fix 0. Furthermore we normalize σ such that $\sigma(S) = 1$. The Hardy space $H^2(S)$ is the norm closure in $L^2(S, d\sigma)$ of the collection of polynomials in the complex variables $z_1, ..., z_n$ [3, Section 5.6]. Let $P : L^2(S, d\sigma) \to H^2(S)$ be the orthogonal projection. For each $\psi \in L^\infty(S, d\sigma)$, the Toeplitz operator $T_\psi : H^2(S) \to H^2(S)$ and the Hankel operator $H_\psi : H^2(S) \to L^2(S, d\sigma) \ominus H^2(S)$ are respectively defined by the formulas

$$T_\psi h = P\psi h \quad \text{and} \quad H_\psi h = (1 - P)\psi h,$$

$h \in H^2(S)$. As usual, let k_z denote the normalized reproducing kernel function for $H^2(S)$. That is, for each $z \in \mathbb{C}^n$ with $|z| < 1$, we write

$$k_z(w) = \frac{(1 - |z|^2)^n/2}{(1 - \langle w, z \rangle)^n}, \quad |w| \leq 1.$$

The main motivation for this investigation comes from the following sufficient condition for the compactness of $H_\psi^*H_\psi$ due to D. Zheng.

Theorem 1.1 ([6, Theorem 3]). Let φ and ψ be in BMO. Then the operator $H_\psi^*H_\psi$ is compact if

$$\lim_{|z| \uparrow 1} \|H_\psi k_z\|\|H_\psi^* k_z\| = 0.$$

(1.1)

Also see the comments on page 22 of [6]. This raises the obvious

Question 1.2. Is (1.1) a necessary condition for the compactness of $H_\psi^*H_\psi$?

In the case $n = 1$, the answer to this question is affirmative. Indeed Zheng proved

Received by the editors November 30, 2006 and, in revised form, February 14, 2007.
2000 Mathematics Subject Classification. Primary 47B07, 47B35.

This work was supported in part by National Science Foundation grant DMS-0456448.

©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1375
Theorem 1.3 ([5, Theorem 2]). Suppose that \(n = 1 \). If the operator \(H^*_\varphi H_\psi \) is compact, then
\[
\lim_{|z| \uparrow 1} \|H_\varphi k_z\|\|H_\psi k_z\| = 0.
\]

Moreover, for any complex dimension \(n \), if \(H^*_\varphi H_\psi \) is compact, then one trivially has
\[
\lim_{|z| \uparrow 1} \|H_\varphi k_z\|^2 = 0.
\]

Given these two facts, and the fact that (1.1) is such a natural-looking condition, one might be tempted to “extrapolate” that the answer to Question 1.2 is affirmative for all \(n \in \mathbb{N} \). The purpose of this paper is to report that that is not the case. In other words, Theorem 1.3 is actually something of an anomaly; in the case \(n \geq 2 \), (1.1) is not a necessary condition for the compactness of \(H^*_\varphi H_\psi \). More precisely, we will prove

Theorem 1.4. For each complex dimension \(n \geq 2 \), there exists a pair of functions \(\varphi \) and \(\psi \) in \(L^\infty(S, d\sigma) \) such that
\[
\limsup_{|z| \uparrow 1} \|H_\varphi k_z\|\|H_\psi k_z\| > 0
\]
and such that the operator \(H^*_\varphi H_\psi \) is compact.

This result tells us something that is somewhat anti-intuitive: while Theorem 1.1 cannot be improved in the case \(n = 1 \), for \(n \geq 2 \) one should try to prove the compactness of \(H^*_\varphi H_\psi \) under a condition that is weaker than (1.1)! This leads to the following question for future investigations.

Question 1.5. For \(n \geq 2 \), what is a necessary and sufficient condition for the compactness of \(H^*_\varphi H_\psi \)?

The basic idea behind Theorem 1.4 is the following. First of all, the problem can be converted to a problem for the product of Toeplitz operators. That is, if \(f \) and \(g \) are real valued and have disjoint supports, then \(H^*_f H_g = -T_f T_g \). If there is a positive distance between the supports of \(f \) and \(g \), then \(T_f T_g \) is compact. Furthermore, if \(f \) and \(g \) depend only on \(|z_1|, \ldots, |z_{n-1}| \), then \(T_f \) and \(T_g \) are diagonal operators with respect to the standard orthonormal basis \(\{e_i : i \in \mathbb{Z}_+^n\} \) in \(H^2(S) \). Therefore \(T_f T_g \) is a diagonal operator with eigenvalues \(\langle fe_i, e_i \rangle \langle ge_i, e_i \rangle, i \in \mathbb{Z}_+^n \). Thus in order for \(\|T_f T_g\| \) to be small, it suffices if one of the two factors \(\|fe_i, e_i\| \), \(\|ge_i, e_i\| \) is small for each \(i \in \mathbb{Z}_+^n \). The fact that we have two factors to manipulate allows us to construct \(f \) and \(g \) such that \(\|T_f T_g\| \) is arbitrarily small while \(\|H_f k_0\|\|H_g k_0\| \) has a predetermined lower bound. The desired functions \(\varphi \) and \(\psi \) are then obtained from a sequence of such \(f \)'s, a sequence of such \(g \)'s, and Möbius transforms. The lower bound for \(\|H_f k_0\|\|H_g k_0\| \) translates into (1.2), and the smallness of \(\|T_f T_g\| \) results in the compactness of \(H^*_\varphi H_\psi \).

The rest of the paper consists of the details of what we described above. Specifically, Section 2 contains the key step, Lemma 2.2. Section 3 recalls Möbius transforms and associated unitary operators. The proof of Theorem 1.4 is completed in Section 4.

For the rest of the paper we assume \(n \geq 2 \).
2. TWO TOEPLITZ OPERATORS

Let Q denote the “first quadrant” of the closed unit ball in \mathbb{R}^{n-1}. In other words,

$$Q = \{(x_1, ..., x_{n-1}) \in \mathbb{R}^{n-1} : x_1^2 + ... + x_{n-1}^2 \leq 1 \text{ and } x_1 \geq 0, ..., x_{n-1} \geq 0\}.$$

On the compact set Q we define the measure $d\mu$ by the formula

$$d\mu(x_1, ..., x_{n-1}) = (n-1)!2^{n-1}x_1...x_{n-1}dx_1...dx_{n-1}.$$

Using the technique described on page 17 of [3], it is straightforward to verify that

$$\int_Q x_1^{2i_1}...x_{n-1}^{2i_{n-1}}d\mu(x_1, ..., x_{n-1}) = \frac{(n-1)!i_1!...i_{n-1}!}{(n-1 + i_1 + ... + i_{n-1})!}$$

for all integers $i_1, ..., i_{n-1}$ in \mathbb{Z}_+. But for such $i_1, ..., i_{n-1}$ we also have

$$\int_S |z_1|^{2i_1}...|z_{n-1}|^{2i_{n-1}}d\sigma(z_1, ..., z_{n-1}, z_n) = \frac{(n-1)!i_1!...i_{n-1}!}{(n-1 + i_1 + ... + i_{n-1})!}$$

[3, Proposition 1.4.9]. Hence, by the Stone-Weierstrass approximation theorem, we have

$$(2.1) \quad \int_S \xi(|z_1|, ..., |z_{n-1}|)d\sigma(z_1, ..., z_{n-1}, z_n) = \int_Q \xi(x_1, ..., x_{n-1})d\mu(x_1, ..., x_{n-1})$$

for every $\xi \in C(S)$.

We will use the usual multi-index notation [3, page 3]. For each $i \in \mathbb{Z}_+^n$, define

$$c_i = \left\{ \frac{(n-1 + |i|)!}{(n-1)!i!} \right\}^{1/2}$$

and the function

$$e_i(z) = c_iz^i, \quad z \in S.$$

Then $\{e_i : i \in \mathbb{Z}_+^n\}$ is the standard orthonormal basis for $H^2(S)$ [3, Proposition 1.4.9].

For the rest of the paper, we set

$$\delta = \frac{1}{200(n-1)^{1/2}}.$$

With this fixed δ, we define the subsets A and B of S as follows:

$$A = \{(z_1, ..., z_{n-1}, z_n) \in S : \delta < |z_j| < 2\delta \text{ for } 1 \leq j \leq n-1\},$$

$$B = \{(z_1, ..., z_{n-1}, z_n) \in S : (n-1)^{-1/2} - \delta < |z_j| < (n-1)^{-1/2} - \delta \text{ for } 1 \leq j \leq n-1\}.$$

Lemma 2.1. (i) Let $f \in C(S)$ be such that $\|f\|_\infty \leq 1$. Furthermore, suppose that the support of f is contained in A. Then for every $i = (i_1, ..., i_{n-1}, i_n)$ in \mathbb{Z}_+^n satisfying the condition

$$i_1 + ... + i_{n-1} \geq i_n$$

we have $|\langle fe_i, e_i \rangle| \leq 2^{-|i|/2}$.

(ii) Let $g \in C(S)$ be such that $\|g\|_\infty \leq 1$. Furthermore, suppose that the support of g is contained in B. Then for every $i = (i_1, ..., i_{n-1}, i_n)$ in \mathbb{Z}_+^n satisfying the condition

$$i_1 + ... + i_{n-1} \leq i_n$$

we have $|\langle ge_i, e_i \rangle| \leq 2^{n-1}(10/3)^{-|i|/4}$.

Proof. (i) Since \(\|f\|_\infty \leq 1 \) and the support of \(f \) is contained in \(A \), it is an easy consequence of (2.1) that for every \(i = (i_1, \ldots, i_{n-1}, i_n) \in \mathbb{Z}_+^n \) we have

\[
|\langle fe_i, e_i \rangle| \leq \int_A |e_i|^2 d\sigma = c_i^2 \int_A y_{i_1}^{2i_1} \cdots y_{i_{n-1}}^{2i_{n-1}} (1 - y_1^2 - \cdots - y_{n-1}^2)^i \, d\mu(x_1, \ldots, x_{n-1}),
\]

where

\[
\tilde{A} = \{(x_1, \ldots, x_{n-1}) : \delta < x_j < 2\delta \text{ for } 1 \leq j \leq n-1\},
\]

which is contained in \(Q \). By the definition of \(\delta \), \(Q \) also contains the set

\[
\tilde{C} = \{(y_1, \ldots, y_{n-1}) : 4\delta < y_j < 5\delta \text{ for } 1 \leq j \leq n-1\}.
\]

Also by the definition of \(\delta \), if \((y_1, \ldots, y_{n-1}) \in \tilde{C} \), then \(y_1^2 + \cdots + y_{n-1}^2 < 1/5 \). On the other hand, if \((x_1, \ldots, x_{n-1}) \in \tilde{A} \), then \(x_j + 3\delta > x_j + x_j = 2x_j \) for every \(1 \leq j \leq n-1 \). Hence

\[
1 = \int_S |e_i|^2 d\sigma = c_i^2 \int_Q y_{i_1}^{2i_1} \cdots y_{i_{n-1}}^{2i_{n-1}} (1 - y_1^2 - \cdots - y_{n-1}^2)^i \, d\mu(y_1, \ldots, y_{n-1})
\]

\[
\geq c_i^2 \int_{\tilde{C}} y_{i_1}^{2i_1} \cdots y_{i_{n-1}}^{2i_{n-1}} (4/5)^i \, d\mu(y_1, \ldots, y_{n-1})
\]

\[
= (4/5)^i c_i^2 (n-1)!^2 (n-1)!^2 \int_A y_{i_1}^{2i_1} \cdots y_{i_{n-1}}^{2i_{n-1}} d\mu(x_1, \ldots, x_{n-1})
\]

\[
\geq (4/5)^i 2^i 2^{i_1+\cdots+i_{n-1}} \int_A x_{i_1}^{2i_1} \cdots x_{i_{n-1}}^{2i_{n-1}} \, d\mu(x_1, \ldots, x_{n-1})
\]

\[
\geq (4/5)^i 2^i 2^{i_1+\cdots+i_{n-1}} |\langle fe_i, e_i \rangle|.
\]

If \(i_1 + \cdots + i_{n-1} \geq i_n \), then \((4/5)^i 2^i 2^{i_1+\cdots+i_{n-1}} \geq 2^i 2^{i_1+\cdots+i_{n-1}} \geq 2^{|i|}/2 \). This proves (i).

(ii) Since \(\|g\|_\infty \leq 1 \) and the support of \(g \) is contained in \(B \), it is an easy consequence of (2.1) that for every \(i = (i_1, \ldots, i_{n-1}, i_n) \in \mathbb{Z}_+^n \) we have

\[
|\langle ge_i, e_i \rangle| \leq \int_B |e_i|^2 d\sigma = c_i^2 \int_B x_{i_1}^{2i_1} \cdots x_{i_{n-1}}^{2i_{n-1}} (1 - x_1^2 - \cdots - x_{n-1}^2)^i \, d\mu(x_1, \ldots, x_{n-1}),
\]

where

\[
\tilde{B} = \{(x_1, \ldots, x_{n-1}) : (n-1)^{-1/2} - \delta < x_j < (n-1)^{-1/2} \text{ for } 1 \leq j \leq n-1\},
\]

which is contained in \(Q \). By the definition of \(\delta \), \(Q \) also contains the set

\[
\tilde{D} = \{(y_1, \ldots, y_{n-1}) : (n-1)^{-1/2} - 6\delta < y_j < (n-1)^{-1/2} - 5\delta \text{ for } 1 \leq j \leq n-1\}.
\]

The choice of \(\delta \) ensures that if \((x_1, \ldots, x_{n-1}) \in \tilde{B} \), then

\[
1 - x_1^2 - \cdots - x_{n-1}^2 \leq 1/100,
\]

\[
1 - (x_1 - 5\delta)^2 - \cdots - (x_{n-1} - 5\delta)^2 \geq 1/30,
\]

and

\[
x_j - 5\delta \geq (9/10)x_j \text{ for } 1 \leq j \leq n-1.
\]
Therefore
\[
1 = \int_S |e_i|^2 d\sigma \geq c_i^2 \int_D y_1^{2i_1} \ldots y_{n-1}^{2i_{n-1}} (1 - y_1^2 - \ldots - y_{n-1}^2)^i_n d\mu(y_1, \ldots, y_{n-1})
\]
\[
= c_i^2 (n-1)!^2 2^{n-1} \int_D y_1^{2i_1+1} \ldots y_{n-1}^{2i_{n-1}+1} (1 - y_1^2 - \ldots - y_{n-1}^2)^i_n dy_1 \ldots dy_{n-1}
\]
\[
= c_i^2 (n-1)!^2 2^{n-1} \int_B \prod_{j=1}^{n-1} (x_j - 5\delta)^{2i_j+1} \left(1 - \sum_{j=1}^{n-1} (x_j - 5\delta)^2 \right)^{i_n} dx_1 \ldots dx_{n-1}
\]
\[
\geq (9/10)^{2(i_1+\ldots+i_{n-1})+n-1}(10/3)^{i_n}
\]
\[
\times c_i^2 (n-1)!^2 2^{n-1} \int_B x_1^{2i_1+1} \ldots x_{n-1}^{2i_{n-1}+1} (1 - x_1^2 - \ldots - x_{n-1}^2)^i_n dx_1 \ldots dx_{n-1}
\]
\[
= (9/10)^{2(i_1+\ldots+i_{n-1})+n-1}(10/3)^{i_n}
\]
\[
\times c_i^2 \int_B x_1^{2i_1} \ldots x_{n-1}^{2i_{n-1}} \left(1 - \sum_{j=1}^{n-1} x_j^2 \right)^{i_n} d\mu(x_1, \ldots, x_{n-1})
\]
\[
\geq 2^{-(n-1)} (9/10)^{2(i_1+\ldots+i_{n-1})}(10/3)^{i_n} |\langle ge_i, e_i \rangle|.
\]
Since \((9/10)^{2(10/3)^{1/2}} > 1\), if \(i_n \geq i_1 + \ldots + i_{n-1}\), then \((9/10)^{2(i_1+\ldots+i_{n-1})}(10/3)^{i_n} \geq (10/3)^{i_n/2} \geq (10/3)^{|i|/4}\). This completes the proof. \(\square\)

For each \(f \in L^2(S, d\sigma)\), denote
\[
\text{Var}(f) = \int \left| f - \int f d\sigma \right|^2 d\sigma.
\]

Lemma 2.2. For any given \(\epsilon > 0\), there exist real-valued \(\tilde{f}, \tilde{g} \in C(Q)\) with \(\|	ilde{f}\|_\infty \leq 1\) and \(\|	ilde{g}\|_\infty \leq 1\) such that the functions \(f\) and \(g\) defined by the formulas
\[
(2.4)
\]
\[
f(z_1, \ldots, z_{n-1}, z_n) = \tilde{f}(|z_1|, \ldots, |z_{n-1}|) \quad \text{and} \quad g(z_1, \ldots, z_{n-1}, z_n) = \tilde{g}(|z_1|, \ldots, |z_{n-1}|),
\]
\((z_1, \ldots, z_{n-1}, z_n) \in S\), have the following properties:
\[
(\alpha) \text{ The support of } f \text{ is contained in } A \text{ and the support of } g \text{ is contained in } B.
\]
\[
(\beta) \text{ Var}(f) \geq (1/3)\delta^{2(n-1)} \text{ and } \text{Var}(g) \geq (1/3)\delta^{2(n-1)}.
\]
\[
(\gamma) \|T_f T_g\| \leq \epsilon.
\]

Proof. Given \(\epsilon > 0\), let \(N \in \mathbb{N}\) be such that \(2n-1(10/3)^{-N/4} \leq \epsilon\). We first show that there is a real-valued \(\tilde{f} \in C(Q)\) with \(\|	ilde{f}\|_\infty \leq 1\) such that the function \(f\) defined by (2.4) has the following properties:
\[
(\text{i}) \text{ The support of } f \text{ is contained in } A.
\]
\[
(\text{ii}) |\langle f e_i, e_i \rangle| \leq \epsilon \text{ if } |i| \leq N.
\]
\[
(\text{iii}) \text{Var}(f) \geq (1/3)\delta^{2(n-1)}.
\]

To construct such an \(f\), let \(F = \{i \in \mathbb{Z}^n : |i| \leq N\}\) and let \(dm_{n-1}\) denote the standard Lebesgue measure on \(\mathbb{R}^{n-1}\). For each \(i = (i_1, \ldots, i_{n-1}, i_n) \in F\), define the function
\[
(2.5) u_i(x_1, \ldots, x_{n-1}) = c_i^2 (n-1)!^2 2^{n-1} x_1^{2i_1+1} \ldots x_{n-1}^{2i_{n-1}+1} (1 - x_1^2 - \ldots - x_{n-1}^2)^i_n
\]
on \(Q\). Since each \(u_i\) is continuous and since \(\text{card}(F) < \infty\), for the given \(\epsilon\) we can decompose the cube \(A\) defined by (2.2) as the union of a finite family of pairwise
disjoint subcubes \(\{ \tilde{A}_j : j \in J \} \) such that for each \(j \in J \) and each \(i \in F \), we have
\[
|u_i(x) - u_i(y)| \leq \epsilon \quad \text{for all } x, y \in \tilde{A}_j.
\]
Now, for each \(j \in J \), it is elementary to construct a real-valued function \(\tilde{f}_j \in C(Q) \) which has the following properties:
(a) The support of \(\tilde{f}_j \) is contained in the interior of \(\tilde{A}_j \).
(b) \(-1 \leq \tilde{f}_j \leq 1\).
(c) \(m_{n-1}(\{x : \tilde{f}_j(x) = 1\}) \geq (1/3)m_{n-1}(\tilde{A}_j)\).
(d) \(m_{n-1}(\{x : \tilde{f}_j(x) = -1\}) \geq (1/3)m_{n-1}(\tilde{A}_j)\).
(e) \(\int_{\tilde{A}_j} \tilde{f}_j dm_{n-1} = 0\).
Define \(\tilde{f} = \sum_{j \in J} \tilde{f}_j \). Then \(\tilde{f} \in C(Q) \), \(-1 \leq f \leq 1\), and the support of \(\tilde{f} \) is contained in \(\tilde{A} \). Hence the support of \(f \) is contained in \(A \), verifying (i).
To verify (ii), apply (2.1), (2.5) and (e). For each \(i \in F \) we have
\[
\langle f e_i, e_i \rangle = \int_Q u_i \tilde{f} dm_{n-1} = \sum_{j \in J} \int_{\tilde{A}_j} u_i \tilde{f}_j dm_{n-1} = \sum_{j \in J} \int_{\tilde{A}_j} (u_i - u_i(a_j)) \tilde{f}_j dm_{n-1},
\]
where \(a_j \) is any chosen point in \(\tilde{A}_j \). Combining this with (2.6), we conclude that
\[
|\langle f e_i, e_i \rangle| \leq \sum_{j \in J} m_{n-1}(\tilde{A}_j) \epsilon = m_{n-1}(\tilde{A}) \epsilon \leq \epsilon,
\]
i \(i \in F \). To prove (iii), observe that (c) and (d) together give us the estimate
\[
\int_{\tilde{A}} |\tilde{f} - c|^2 dm_{n-1} \geq \sum_{j \in J} \frac{1}{3} m_{n-1}(\tilde{A}_j) = \frac{1}{3} m_{n-1}(\tilde{A}) = \frac{1}{3} \delta^{n-1}
\]
for every \(c \in C \). By (2.1) and the fact that \(x_1 ... x_{n-1} \geq \delta^{n-1} \) if \((x_1, ..., x_{n-1}) \in \tilde{A} \), we have
\[
\int_{Q} |f - c|^2 d\mu = \int_{Q} |\tilde{f} - c|^2 d\mu \geq \delta^{n-1} \int_{\tilde{A}} |\tilde{f} - c|^2 dm_{n-1} \geq \frac{1}{3} \delta^{2(n-1)}.
\]
This proves (iii) and completes the construction of \(f \).
To construct \(\tilde{g} \), consider the cube \(\tilde{B} \) defined by (2.3). It is elementary that there is a real-valued \(\tilde{g} \in C(Q) \) which has the following properties:
(1) The support of \(\tilde{g} \) is contained in the interior of \(\tilde{B} \).
(2) \(-1 \leq \tilde{g} \leq 1\).
(3) \(m_{n-1}(\{x : \tilde{g}(x) = 1\}) \geq (1/3)m_{n-1}(\tilde{B})\).
(4) \(m_{n-1}(\{x : \tilde{g}(x) = -1\}) \geq (1/3)m_{n-1}(\tilde{B})\).
Then (3) and (4) together imply that
\[
\int_{\tilde{B}} |\tilde{g} - c|^2 dm_{n-1} \geq \frac{1}{3} m_{n-1}(\tilde{B}) = \frac{1}{3} \delta^{n-1}
\]
for every \(c \in C \). By (2.3) and the definition of \(\delta \), if \((x_1, ..., x_{n-1}) \in \tilde{B} \), then \(x_1 ... x_{n-1} \geq ((n-1)^{-1/2} - \delta)n^{-1} \geq \delta^{n-1} \). Thus it follows from (2.4) and (2.1) that
\[
\int_{Q} |\tilde{g} - c|^2 d\mu = \int_{Q} |\tilde{g} - c|^2 d\mu \geq \delta^{n-1} \int_{\tilde{B}} |\tilde{g} - c|^2 dm_{n-1} \geq \frac{1}{3} \delta^{2(n-1)}.
\]
This establishes (\(\alpha \)) and (\(\beta \)).
To prove (γ), note that (2.4) implies \(\langle fe_i, e_{i'} \rangle = 0 = \langle ge_i, e_{i'} \rangle \) for all \(i \neq i' \) in \(\mathbb{Z}_+^n \). Thus the Toeplitz operators \(T_f \) and \(T_g \) are diagonal operators with respect to the orthonormal basis \(\{ e_i : i \in \mathbb{Z}_+^n \} \). Consequently

\[
T_f T_g = \sum_{i \in \mathbb{Z}_+^n} \langle fe_i, e_i \rangle \langle ge_i, e_i \rangle e_i \otimes e_i.
\]

By Lemma 2.1, \(\langle fe_i, e_i \rangle \langle ge_i, e_i \rangle \leq 2^{n-1}(10/3)^{-|i|/4} \) for every \(i \in \mathbb{Z}_+^n \). By the choice of \(N \), this gives us \(\langle fe_i, e_i \rangle \langle ge_i, e_i \rangle \leq \epsilon \) in the case \(|i| \geq N \). But when \(|i| \leq N \), it follows from property (ii) for \(f \) that \(\langle fe_i, e_i \rangle \leq \epsilon \). Hence \(\|T_f T_g\| \leq \epsilon \).

3. Möbius transform

For each \(z \in \mathbb{C}^n \) with \(0 < |z| < 1 \), define the Möbius transform

\[
\varphi_z(w) = \frac{1}{1 - \langle w, z \rangle} \left\{ z - \frac{\langle w, z \rangle}{|z|^2} z - (1 - |z|^2)^{1/2} \left(w - \frac{\langle w, z \rangle}{|z|^2} z \right) \right\}, \quad |w| \leq 1.
\]

Then \(\varphi_z \) is an involution, i.e., \(\varphi_z \circ \varphi_z = id \) [3, Theorem 2.2.2]. Recall that the formula

\[
(U_z f)(w) = f(\varphi_z(w))k_z(w)
\]

defines a unitary operator on \(L^2(S, d\sigma) \) with the property \([U_z, P] = 0 \) [4, Section 6]. Therefore for any \(f \in L^\infty(S, d\sigma) \), \(\|H_f \varphi_z k_z\| = \|(1 - P)U_z f\| = \|(1 - P)f\| \). If \(f \) is a real-valued function, then \(2\|f(1 - P)f\|^2 \geq \text{Var}(f) \) [4, (6.3)]. Thus we conclude that

\[
\|H_f \varphi_z k_z\|^2 \geq \frac{1}{2} \text{Var}(f)
\]

for every real-valued \(f \in L^\infty(S, d\sigma) \).

Recall that the formula \(d(u, v) = |1 - \langle u, v \rangle|^{1/2} \), \(u, v \in S \), defines a metric on \(S \) [3, page 66]. For \(u \in S \) and \(a > 0 \), let \(B(u, a) \) denote the open ball with respect to the metric \(d \). That is, we write

\[
B(u, a) = \{ v \in S : |1 - \langle u, v \rangle|^{1/2} < a \}.
\]

Lemma 3.1. Let \(0 < a < 1 \). If \(1 - (a^4/4) < r < 1 \), then for every \(u \in S \) we have

\[
\varphi_{ru}(S\backslash B(u, a)) \subset B(u, a).
\]

Proof. It is easy to see that \(\varphi_{ru}(-u) = u \) if \(0 < r < 1 \) and \(u \in S \). For such \(r \) and \(u \), it follows from [3, Theorem 2.2.2] that

\[
1 - \langle \varphi_{ru}(w), u \rangle = 1 - \langle \varphi_{ru}(w), \varphi_{ru}(-u) \rangle = \frac{(1 - r)(1 + \langle w, u \rangle)}{1 - r \langle w, u \rangle}.
\]

It is elementary that if \(|c| \leq 1 \) and \(0 < r < 1 \), then \(2|1 - rc| \geq |1 - c| \). Hence

\[
|1 - \langle \varphi_{ru}(w), u \rangle| \leq \frac{4(1 - r)}{|1 - \langle w, u \rangle|}
\]

for \(0 < r < 1 \) and \(w, u \in S \). Therefore if \(1 - r < a^4/4 \) and \(|1 - \langle w, u \rangle| \geq a^2 \), then \(|1 - \langle \varphi_{ru}(w), u \rangle| \leq a^2 \). That is, if \(1 - (a^4/4) < r < 1 \) and \(w \in S \backslash B(u, a) \), then \(\varphi_{ru}(w) \in B(u, a) \).
4. Proof of Theorem 1.4

Let A, B be the same as in Section 2. Then the open set $V = S \setminus (\bar{A} \cup \bar{B})$ is obviously not empty. Thus there exist a sequence of points $\{u_j\}_{j=1}^\infty$ in V and a sequence of positive numbers $\{a_j\}_{j=1}^\infty$ with $\lim_{j \to \infty} a_j = 0$ such that $B(u_j, a_j) \subset V$ for every j and

$$B(u_j, 2a_j) \cap B(u_{j'}, 2a_{j'}) = \emptyset \quad \text{if} \quad j \neq j'. \quad (4.1)$$

For each $j \in \mathbb{N}$, pick an $r_j \in (1 - (a_j^4/4), 1)$. Then $\lim_{j \to \infty} r_j = 1$. Define $z(j) = r_j u_j$, $j \in \mathbb{N}$. Then Lemma 3.1 tells us that

$$\varphi_{z(j)}(S \setminus B(u_j, a_j)) \subset B(u_j, a_j) \quad (4.2)$$

for every j.

By Lemma 2.2, for each $j \in \mathbb{N}$ there exist real-valued $f_j, g_j \in C(S)$ such that

1. $\|f_j\|_\infty \leq 1$ and $\|g_j\|_\infty \leq 1$;
2. the support of f_j is contained in A and the support of g_j is contained in B;
3. $\Var(f_j) \geq (1/3)\delta^{2(n-1)}$ and $\Var(g_j) \geq (1/3)\delta^{2(n-1)}$;
4. $\|T_{f_j}T_{g_j}\| \leq 2^{-j}$.

By (4.2) and the fact that $B(u_j, a_j) \subset V = S \setminus (\bar{A} \cup \bar{B})$, the supports of $f_j \circ \varphi_{z(j)}$ and $g_j \circ \varphi_{z(j)}$ are contained in $B(u_j, a_j)$. Combining this with (4.1), we have

$$f_j \circ \varphi_{z(j)} \cdot f_{j'} \circ \varphi_{z(j')} = 0 = g_j \circ \varphi_{z(j)} \cdot g_{j'} \circ \varphi_{z(j')} \quad \text{if} \quad j \neq j'. \quad (4.3)$$

Since $f_j g_j = 0$, we also have

$$f_j \circ \varphi_{z(j)} \cdot g_{j'} \circ \varphi_{z(j')} = 0 \quad \text{for all} \quad j, j' \in \mathbb{N}. \quad (4.4)$$

Denote $c = (1/6)\delta^{2(n-1)}$. Since f_j, g_j are real-valued, (3.2) tells us that

$$\|H_{f_j \circ \varphi_{z(j)}} k_{z(j)}\| \|H_{g_j \circ \varphi_{z(j)}} k_{z(j)}\| \geq \frac{1}{2}(\Var(f_j)\Var(g_j))^{1/2} \geq c, \quad (4.5)$$

$j \in \mathbb{N}$.

It is well known that $\sigma(B(u, a)) \leq A_0 a^{2n}$ [3, Proposition 5.1.4]. Since $\|f_j\|_\infty \leq 1$ and $\|g_j\|_\infty \leq 1$ and the supports of $f_j \circ \varphi_{z(j)}$ and $g_j \circ \varphi_{z(j)}$ are contained in $B(u_j, a_j)$, we have

$$\lim_{j \to \infty} \|M_{f_j \circ \varphi_{z(j)}} h\| = 0 \quad \text{and} \quad \lim_{j \to \infty} \|M_{g_j \circ \varphi_{z(j)}} h\| = 0 \quad (4.6)$$

for every $h \in L^2(S, d\sigma)$. By (4.1) and a trivial estimate using the Cauchy integral formula for P [3, Section 3.2],

$$\lim_{j \to \infty} \|M_{f_j \circ \varphi_{z(j)} P} M_{g_\nu \circ \varphi_{z(\nu)}}\| = 0 \quad \text{and} \quad \lim_{j \to \infty} \|M_{f_\nu \circ \varphi_{z(\nu)} P} M_{g_j \circ \varphi_{z(j)}}\| = 0 \quad (4.7)$$

for every $\nu \in \mathbb{N}$. Since $f_\nu \circ \varphi_{z(\nu)}, g_\nu \circ \varphi_{z(\nu)} \in C(S)$, the Hankel operators $H_{f_\nu \circ \varphi_{z(\nu)}}$ and $H_{g_\nu \circ \varphi_{z(\nu)}}$ are compact. Therefore for every $\nu \in \mathbb{N}$ we also have

$$\lim_{j \to \infty} \|H_{f_\nu \circ \varphi_{z(\nu)}} k_{z(j)}\| = 0 \quad \text{and} \quad \lim_{j \to \infty} \|H_{g_\nu \circ \varphi_{z(\nu)}} k_{z(j)}\| = 0. \quad (4.8)$$
Using (4.6), (4.7), (4.8) and a standard induction argument, we can select a strictly increasing sequence of natural numbers \(j_1 < \ldots < j_m < \ldots \) such that the inequalities

\[
\sum_{i=1}^{m-1} (\| M_{f_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_i)} \| + \| M_{g_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_i)} \|) \leq 2^{-m},
\]

\[
\sum_{i=1}^{m-1} (\| M_{f_{j_m} \circ \varphi_{z(j_m)}} PM g_{j_i} \circ \varphi_{z(j_i)} \| + \| M_{f_{j_i} \circ \varphi_{z(j_i)}} PM g_{j_m} \circ \varphi_{z(j_m)} \|) \leq 2^{-m},
\]

\[
\sum_{i=1}^{m-1} (\| H_{f_{j_i} \circ \varphi_{z(j_i)}} k_{z(j_m)} \| + \| H_{g_{j_i} \circ \varphi_{z(j_i)}} k_{z(j_m)} \|) \leq 2^{-m}
\]

hold for every \(m \geq 2 \).

To prove Theorem 1.4, we define

\[
\varphi = \sum_{m=1}^{\infty} f_{j_m} \circ \varphi_{z(j_m)} \quad \text{and} \quad \psi = \sum_{m=1}^{\infty} g_{j_m} \circ \varphi_{z(j_m)}.
\]

By (4.3) and the fact that \(\| f_j \|_\infty \leq 1 \) and \(\| g_j \|_\infty \leq 1 \), we have \(\| \varphi \|_\infty \leq 1 \) and \(\| \psi \|_\infty \leq 1 \). For each \(m \geq 2 \), it follows from (4.11) and (4.9) that

\[
\| H_\varphi k_{z(j_m)} \| \geq \| H_{f_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_m)} \| - \sum_{i=1}^{m-1} \| H_{f_{j_i} \circ \varphi_{z(j_i)}} k_{z(j_m)} \|
\]

\[
\geq \| H_{f_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_m)} \| - \sum_{i=m+1}^{\infty} \| H_{f_{j_i} \circ \varphi_{z(j_i)}} k_{z(j_m)} \|
\]

\[
\geq \| H_{g_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_m)} \| - 2^{-m} - \sum_{i=m+1}^{\infty} 2^{-i}
\]

\[
= \| H_{g_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_m)} \| - 2^{-m+1}.
\]

Similarly, \(\| H_\psi k_{z(j_m)} \| \geq \| H_{g_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_m)} \| - 2^{-m+1} \). Combining this with (4.5), we have

\[
\| H_\varphi k_{z(j_m)} \| \| H_\psi k_{z(j_m)} \| \geq \| H_{f_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_m)} \| \| H_{g_{j_m} \circ \varphi_{z(j_m)}} k_{z(j_m)} \| - 2^{-m+2}
\]

\[
\geq c - 2^{-m+2}
\]

for \(m \geq 2 \). Since \(|z(j_m)| = r_{j_m} \) and \(\lim_{m \to \infty} r_{j_m} = 1 \), this proves (1.2).

To prove that \(H_\varphi^* H_\psi \) is compact, observe that (4.4) gives us \(\varphi \psi = 0 \). Thus \(H_\varphi^* H_\psi = -T_\varphi T_\psi = -T_\varphi T_\psi \). Hence it suffices to show that \(T_\varphi T_\psi \) is compact. By (4.4) and the fact that \(f_j, g_j \) are continuous, the operator \(T_{f_j \circ \varphi_{z(j)}} T_{g_j \circ \varphi_{z(j')}} \) is compact for all \(j, j' \in \mathbb{N} \). Thus, by (4.12), to prove that \(T_\varphi T_\psi \) is compact, it suffices to show that

\[
\sum_{\ell=1}^{\infty} \sum_{m=1}^{\infty} \| T_{f_{j_\ell} \circ \varphi_{z(j_\ell)}} T_{g_{j_m} \circ \varphi_{z(j_m)}} \| < \infty.
\]
We write the above sum as $X + Y$, where

$$
X = \sum_{m=1}^{\infty} \|T_{j_m} \circ \varphi_{z(j_m)} T_{g_{j_m}} \circ \varphi_{z(j_m)}\|
$$

$$
Y = \sum_{i=1}^{\infty} \sum_{m=1}^{\infty} \left(\|T_{j_{m+i}} \circ \varphi_{z(j_{m+i})} T_{g_{j_m}} \circ \varphi_{z(j_m)}\| + \|T_{j_m} \circ \varphi_{z(j_m)} T_{g_{j_{m+i}}} \circ \varphi_{z(j_{m+i})}\| \right).
$$

By (4.10), we have

$$
Y \leq \sum_{i=1}^{\infty} \sum_{m=1}^{\infty} 2^{-(m+i)} < \infty.
$$

Recalling (3.1), we have

$$
U_{z(j)} T_{f_j} T_{g_j} U_{z(j)}^* = T_{f_j} \circ \varphi_{z(j)} T_{g_j} \circ \varphi_{z(j)}.
$$

Hence $\|T_{f_j} \circ \varphi_{z(j)} T_{g_j} \circ \varphi_{z(j)}\| = \|T_{f_j} T_{g_j}\| \leq 2^{-j}$, which leads to the conclusion $X < \infty$. This proves (4.13) and completes the proof of Theorem 1.4.

References

Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260

E-mail address: jxia@acsu.buffalo.edu