Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Remarks on elliptic problems involving the Caffarelli-Kohn-Nirenberg inequalities


Authors: Gongbao Li and Shuangjie Peng
Journal: Proc. Amer. Math. Soc. 136 (2008), 1221-1228
MSC (2000): Primary 35J60, 35B33
DOI: https://doi.org/10.1090/S0002-9939-07-09229-5
Published electronically: December 18, 2007
MathSciNet review: 2367096
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give some regularity results of the solutions and a Liouville type theorem to singular elliptic equations involving the Caffarelli-Kohn- Nirenberg inequalities.


References [Enhancements On Off] (What's this?)

  • 1. F. V. Atkinson, H. Brezis and L. A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponent, J. Differential Equations, 85(1990), 151-170. MR 1052332 (91e:35021)
  • 2. F. V. Atkinson and L. A. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations, 70(1987), 349-365. MR 915493 (89e:35054)
  • 3. K. Chou, C. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc., 48(1993), 137-151. MR 1223899 (94h:46052)
  • 4. D. Cao, S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev exponent and Hardy terms, J. Differential Equations, 193(2003), 424-434. MR 1998962 (2004e:35058)
  • 5. D. Cao, S. Peng, Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth, Ann. Math. Pura Appl., 185(2006), 189-205. MR 2214132 (2007h:35080)
  • 6. L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights, Compositio Math., 53(1984), 259-275. MR 768824 (86c:46028)
  • 7. F. Catrina, Z. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extermal functions, Comm. Pure Appl. Math., 54(2001), 229-258. MR 1794994 (2001k:35028)
  • 8. L. Dupaigne, A nonlinear elliptic PDE with the inverse square potential, J. Anal. Math., 86(2002), 359-398. MR 1894489 (2003c:35046)
  • 9. A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations, 177(2001), 494-522. MR 1876652 (2002m:35068)
  • 10. V. Felli, M. Schneider, A note on regularity of solutions to degenerate critical elliptic equations of Caffarelli-Kohn-Nirenberg type, Adv. Nonlinear Stud. 3(2003) 431-443. MR 2017240 (2004k:35151)
  • 11. B. Gidas, W-M. Ni and L. Nirenberg, Symmetry and related properties via maximum principle, Comm. Math. Phys., 68(1979), 209-243. MR 544879 (80h:35043)
  • 12. B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34(1981), 525-598. MR 615628 (83f:35045)
  • 13. E. Jannelli, The role played by space dimension in elliptic critical problems, J. Differential Equations, 156(1999), 407-426. MR 1705383 (2000f:35053)
  • 14. D. Kang, G. Li and S. Peng, Positive solutions and critical dimensions for the elliptic problems involving the Caffarelli-Kohn-Nirenberg inequalities, preprint.
  • 15. S. Terracini, On positive solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1(1996), 241-264. MR 1364003 (97b:35057)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35J60, 35B33

Retrieve articles in all journals with MSC (2000): 35J60, 35B33


Additional Information

Gongbao Li
Affiliation: School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, People’s Republic of China

Shuangjie Peng
Affiliation: School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, People’s Republic of China

DOI: https://doi.org/10.1090/S0002-9939-07-09229-5
Received by editor(s): August 2, 2006
Published electronically: December 18, 2007
Additional Notes: This work was partially supported by NSFC (10571069,10631030), the Key Project of the Chinese Ministry of Education (107081), and NCET-07-0350.
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society