Remarks on elliptic problems involving the Caffarelli-Kohn-Nirenberg inequalities

Authors:
Gongbao Li and Shuangjie Peng

Journal:
Proc. Amer. Math. Soc. **136** (2008), 1221-1228

MSC (2000):
Primary 35J60, 35B33

DOI:
https://doi.org/10.1090/S0002-9939-07-09229-5

Published electronically:
December 18, 2007

MathSciNet review:
2367096

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give some regularity results of the solutions and a Liouville type theorem to singular elliptic equations involving the Caffarelli-Kohn- Nirenberg inequalities.

**1.**F. V. Atkinson, H. Brezis and L. A. Peletier,*Nodal solutions of elliptic equations with critical Sobolev exponent*, J. Differential Equations,**85**(1990), 151-170. MR**1052332 (91e:35021)****2.**F. V. Atkinson and L. A. Peletier,*Elliptic equations with nearly critical growth*, J. Differential Equations,**70**(1987), 349-365. MR**915493 (89e:35054)****3.**K. Chou, C. Chu,*On the best constant for a weighted Sobolev-Hardy inequality*, J. London Math. Soc.,**48**(1993), 137-151. MR**1223899 (94h:46052)****4.**D. Cao, S. Peng,*A note on the sign-changing solutions to elliptic problems with critical Sobolev exponent and Hardy terms*, J. Differential Equations,**193**(2003), 424-434. MR**1998962 (2004e:35058)****5.**D. Cao, S. Peng,*Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth*, Ann. Math. Pura Appl.,**185**(2006), 189-205. MR**2214132 (2007h:35080)****6.**L. Caffarelli, R. Kohn and L. Nirenberg,*First order interpolation inequality with weights*, Compositio Math.,**53**(1984), 259-275. MR**768824 (86c:46028)****7.**F. Catrina, Z. Wang,*On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extermal functions*, Comm. Pure Appl. Math.,**54**(2001), 229-258. MR**1794994 (2001k:35028)****8.**L. Dupaigne,*A nonlinear elliptic PDE with the inverse square potential*, J. Anal. Math.,**86**(2002), 359-398. MR**1894489 (2003c:35046)****9.**A. Ferrero, F. Gazzola,*Existence of solutions for singular critical growth semilinear elliptic equations*, J. Differential Equations,**177**(2001), 494-522. MR**1876652 (2002m:35068)****10.**V. Felli, M. Schneider,*A note on regularity of solutions to degenerate critical elliptic equations of Caffarelli-Kohn-Nirenberg type*, Adv. Nonlinear Stud.**3**(2003) 431-443. MR**2017240 (2004k:35151)****11.**B. Gidas, W-M. Ni and L. Nirenberg,*Symmetry and related properties via maximum principle*, Comm. Math. Phys.,**68**(1979), 209-243. MR**544879 (80h:35043)****12.**B. Gidas and J. Spruck,*Global and local behavior of positive solutions of nonlinear elliptic equations*, Comm. Pure Appl. Math.,**34**(1981), 525-598. MR**615628 (83f:35045)****13.**E. Jannelli,*The role played by space dimension in elliptic critical problems*, J. Differential Equations,**156**(1999), 407-426. MR**1705383 (2000f:35053)****14.**D. Kang, G. Li and S. Peng,*Positive solutions and critical dimensions for the elliptic problems involving the Caffarelli-Kohn-Nirenberg inequalities*, preprint.**15.**S. Terracini,*On positive solutions to a class of equations with a singular coefficient and critical exponent*, Adv. Differential Equations,**1**(1996), 241-264. MR**1364003 (97b:35057)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35J60,
35B33

Retrieve articles in all journals with MSC (2000): 35J60, 35B33

Additional Information

**Gongbao Li**

Affiliation:
School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, People’s Republic of China

**Shuangjie Peng**

Affiliation:
School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, People’s Republic of China

DOI:
https://doi.org/10.1090/S0002-9939-07-09229-5

Received by editor(s):
August 2, 2006

Published electronically:
December 18, 2007

Additional Notes:
This work was partially supported by NSFC (10571069,10631030), the Key Project of the Chinese Ministry of Education (107081), and NCET-07-0350.

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.