Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Randomization of Sharkovskii-type theorems


Author: Jan Andres
Journal: Proc. Amer. Math. Soc. 136 (2008), 1385-1395
MSC (2000): Primary 37E05, 37E15, 37H10; Secondary 47H04, 47H40
DOI: https://doi.org/10.1090/S0002-9939-07-09242-8
Published electronically: December 18, 2007
Erratum: Proc. Amer. Math. Soc. 136 (2008), 3733-3734
MathSciNet review: 2367111
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We formulate an abstract scheme for the randomization of Sharkovskii-type theorems via transformation to the deterministic case. In particular, Sharkovskii-type theorems for scalar differential equations can be randomized in this way. A random version of the standard Sharkovskii theorem is presented explicitly. Many remarks, comments and illustrating examples are supplied.


References [Enhancements On Off] (What's this?)

  • [ALM1] L. Alsedà, J. Llibre, and M. Misiurewicz, Low-dimensional combinatorial dynamics, Int. J. Bifurc. Chaos A 9 (1999), no. 9, 1687-1704. MR 1728729 (2000h:37055)
  • [ALM2] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, 2nd ed., Advanced Series in Nonlinear Dynamics, Vol. 5, World Scientific, Singapore, 2000. MR 1807264 (2001j:37073)
  • [AFP1] J. Andres, T. Fürst, and K. Pastor, Period two implies all periods for a class of ODEs: a multivalued map approach, Proc. Am. Math. Soc., 135, (2007) no. 10, 3187-3191.
  • [AFP2] -, Sharkovskii's theorem, differential inclusions, and beyond, Submitted.
  • [AG] J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer, Dordrecht, 2003. MR 1998968 (2005a:47102)
  • [AP] J. Andres and K. Pastor, A version of Sharkovskii's theorem for differential equations, Proc. Am. Math. Soc. 133 (2005), no. 2, 449-453. MR 2093067 (2005e:34124)
  • [APS] J. Andres, K. Pastor, and P. Šnyrychová, A multivalued version of Sharkovskii's theorem holds with at most two exceptions, J. Fixed Point Th. Appl., 2 (2007) 153-170.
  • [ASS] J. Andres, P. Šnyrychová, and P. Szuca, Sharkovskii's theorem for connectivity $ G_\delta$-relations, Int. J. Bifurc. Chaos 16 (2006), no. 8, 2377-2393. MR 2266021 (2007f:37062)
  • [CL] M. Carme Leseduarte and J. Llibre, On the full periodicity kernel for one-dimensional maps, Ergodic Theory Dyn. Syst. 19 (1999), no. 1, 101-126. MR 1676930 (2000d:37044)
  • [FJJK] R. Fabbri, T. Jäger, R. Johnson, and G. Keller, A Sharkovskii-type theorem for minimally forced interval maps, Topol. Methods Nonlinear Anal. 26 (2005), no. 1, 163-188. MR 2179355 (2006f:37052)
  • [Go] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd ed., Springer, Berlin, 2006. MR 2238622 (2007f:58014)
  • [HP] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. 1: Theory. Kluwer, Dordrecht, 1997. MR 1485775 (98k:47001)
  • [Kd] P. E. Kloeden, On Sharkovsky's cycle coexistence ordering, Bull. Aust. Math. Soc. 20 (1979), 171-179. MR 557223 (81d:58045)
  • [Kl] M. Klünger, Periodicity and Sharkovsky's theorem for random dynamical systems, Stoch. Dyn. 1 (2001), no. 3, 299-338. MR 1859009 (2002g:37064)
  • [Sc] H. Schirmer, A topologist's view of Sharkovsky's theorem, Houston J. Math. 11 (1985), 385-395. MR 808654 (87e:58178)
  • [Sh] A. N. Sharkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukrainian Math. J. 16 (1964), 61-71, (in Russian); English translation: Int. J. Bifurc. Chaos 5 (1995), 1263-1273. MR 1361914 (96j:58058)
  • [Sz] P. Szuca, Sharkovskiı's theorem holds for some discontinuous functions, Fundam. Math. 179 (2003), no. 1, 27-41. MR 2028925 (2004m:37074)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37E05, 37E15, 37H10, 47H04, 47H40

Retrieve articles in all journals with MSC (2000): 37E05, 37E15, 37H10, 47H04, 47H40


Additional Information

Jan Andres
Affiliation: Department of Mathematical Analysis, Faculty of Science, Palacký University, Tomkova 40, 779 00 Olomouc-Hejčín, Czech Republic
Email: andres@inf.upol.cz

DOI: https://doi.org/10.1090/S0002-9939-07-09242-8
Keywords: Sharkovskii-type theorems, randomization, transformation to deterministic case, random periodic orbits, transversal maps
Received by editor(s): February 14, 2007
Published electronically: December 18, 2007
Additional Notes: This work was supported by the Council of Czech Government (MSM 6198959214).
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society