A GENERALIZED BANACH CONTRACTION PRINCIPLE THAT CHARACTERIZES METRIC COMPLETENESS

TOMONARI SUZUKI

(Communicated by Joseph A. Ball)

Abstract. We prove a fixed point theorem that is a very simple generalization of the Banach contraction principle and characterizes the metric completeness of the underlying space. We also discuss the Meir-Keeler fixed point theorem.

1. INTRODUCTION

Throughout this paper we denote by \(\mathbb{N} \) the set of all positive integers and by \(\mathbb{R} \) the set of all real numbers.

The following famous theorem is referred to as the Banach contraction principle.

Theorem 1 (Banach [1]). Let \((X, d)\) be a complete metric space and let \(T\) be a contraction on \(X\), i.e., there exists \(r \in [0, 1)\) such that

\[d(Tx, Ty) \leq rd(x, y) \]

for all \(x, y \in X\). Then \(T\) has a unique fixed point.

This theorem is very forceful and simple, and it became a classical tool in nonlinear analysis. Moreover, it has many generalizations; see [2, 3, 4, 8, 9, 14, 15, 17, 18, 21, 23, 24, 25] and others. On the other hand, Connell [6] gave an example of a metric space \(X\) such that \(X\) is not complete and every contraction on \(X\) has a fixed point. Thus, Theorem 1 cannot characterize the metric completeness of \(X\) which means the notion of contractions is too strong from this point of view.

A mapping \(T\) on a metric space \((X, d)\) is called Kannan if there exists \(\alpha \in [0, 1/2)\) such that

\[d(Tx, Ty) \leq \alpha d(x, Tx) + \alpha d(y, Ty) \]

for all \(x, y \in X\). Kannan [11] proved that if \(X\) is complete, then every Kannan mapping has a fixed point. We note that Kannan’s theorem is not an extension of Theorem 1. In our opinion, Kannan’s fixed point theorem is also very important because Subrahmaniyam [22] proved that Kannan’s theorem characterizes the metric completeness. That is, a metric space \(X\) is complete if and only if every Kannan mapping on \(X\) has a fixed point. Also, several mathematicians have studied the...
Define a nonincreasing function

\[d \]

generalize the Meir-Keeler fixed point theorem [17].

In this paper, we prove a fixed point theorem which is a generalization of Theorem 1 and characterizes the metric completeness. Though there are many generalizations of Theorem 1, the direction of our extension is new and very simple. We also generalize the Meir-Keeler fixed point theorem [17].

2. Fixed point theorem

In this section, we prove the following theorem, which is a generalization of the Banach contraction principle (Theorem 1).

Theorem 2. Let \((X, d)\) be a complete metric space and let \(T\) be a mapping on \(X\). Define a nonincreasing function \(\theta\) from \([0, 1]\) onto \((1/2, 1]\) by

\[
\theta(r) = \begin{cases}
1 & \text{if } 0 \leq r \leq (\sqrt{5} - 1)/2, \\
(1 - r)r^{-2} & \text{if } (\sqrt{5} - 1)/2 \leq r \leq 2^{-1/2}, \\
(1 + r)^{-1} & \text{if } 2^{-1/2} \leq r < 1.
\end{cases}
\]

Assume that there exists \(r \in [0, 1)\) such that

\[\theta(r) d(x, Tx) \leq d(x, y) \]

implies

\[d(Tx, Ty) \leq r d(x, y) \]

for all \(x, y \in X\). Then there exists a unique fixed point \(z \) of \(T\). Moreover \(\lim_{n \to \infty} T^n x = z\) for all \(x \in X\).

Proof. Since \(\theta(r) \leq 1\), \(\theta(r) d(x, Tx) \leq d(x, Tx)\) holds for every \(x \in X\). By hypothesis,

\[d(Tx, T^2x) \leq r d(x, Tx) \]

for all \(x \in X\). We now fix \(u \in X\) and define a sequence \(\{u_n\}\) in \(X\) by \(u_n = T^n u\). Then (1) yields \(d(u_n, u_{n+1}) \leq r^n d(u, Tu)\), so \(\sum_{n=1}^{\infty} d(u_n, u_{n+1}) < \infty\), and a standard argument shows \(\{u_n\}\) is a Cauchy sequence. Since \(X\) is complete, \(\{u_n\}\) converges to some point \(z \in X\). We next show

\[d(Tx, z) \leq r d(x, z) \]

for all \(x \in X \setminus \{z\}\).

For \(x \in X \setminus \{z\}\), there exists \(\nu \in \mathbb{N}\) such that \(d(u_n, z) \leq d(x, z)/3\) for all \(n \in \mathbb{N}\) with \(n \geq \nu\). Then we have

\[
\theta(r) d(u_n, Tu_n) \leq d(u_n, Tu_n) = d(u_n, u_{n+1}) \\
\leq d(u_n, z) + d(u_{n+1}, z) \\
\leq (2/3) d(x, z) = d(x, z) - d(x, z)/3 \\
\leq d(x, z) - d(u_n, z) \leq d(u_n, x).
\]

Hence and by hypothesis, \(d(u_{n+1}, Tx) \leq r d(u_n, x)\) for \(n \geq \nu\). Letting \(n\) tend to \(\infty\), we get \(d(Tx, z) \leq r d(x, z)\). That is, we have shown (2). Arguing by contradiction, we assume that \(T^j z \neq z\) for all \(j \in \mathbb{N}\). Then (2) yields

\[d(T^{j+1}z, z) \leq r^j d(Tz, z) \]

for \(j \in \mathbb{N}\).

We consider the following three cases:

- \(0 \leq r \leq (\sqrt{5} - 1)/2\),
- \((\sqrt{5} - 1)/2 < r < 2^{-1/2}\),
* * * $2^{-1/2} \leq r < 1.$

In the case where $0 \leq r \leq (\sqrt{5} - 1)/2,$ we note $r^2 + r - 1 \leq 0$ and $2r^2 < 1.$ If we assume $d(T^2 z, z) < d(T^2 z, T^3 z),$ then we have

\[
d(z, Tz) \leq d(z, T^2 z) + d(Tz, T^2 z) \\
< \{d(T^2 z, T^3 z) + d(Tz, T^2 z) \\
\leq r^2 d(z, Tz) + r d(z, Tz) \\
\leq d(z, Tz).
\]

This is a contradiction. So we have

\[
d(T^2 z, z) \geq d(T^2 z, T^3 z) = \theta(r) d(T^2 z, T \circ T^2 z).
\]

By hypothesis and (3), we have

\[
d(z, Tz) \leq d(z, T^2 z) + d(T^3 z, Tz) \\
\leq r^2 d(z, Tz) + r d(T^2 z, z) \\
\leq r^2 d(z, Tz) + r^2 d(Tz, z) = 2r^2 d(z, Tz) \\
< d(z, Tz).
\]

This is a contradiction. In the case where $(\sqrt{5} - 1)/2 < r < 2^{-1/2},$ we note $2r^2 < 1.$ If we assume $d(T^2 z, z) < \theta(r) d(T^2 z, T^3 z),$ then we have in view of (1)

\[
d(z, Tz) \leq d(z, T^2 z) + d(Tz, T^2 z) \\
< \theta(r) d(T^2 z, T^3 z) + d(Tz, T^2 z) \\
\leq \theta(r) r^2 d(z, Tz) + r d(z, Tz) = d(z, Tz).
\]

This is a contradiction. Hence $d(T^2 z, z) \geq \theta(r) d(T^2 z, T \circ T^2 z).$ As in the previous case, we can prove

\[
d(z, Tz) \leq 2r^2 d(z, Tz) < d(z, Tz).
\]

This is a contradiction. In the third case, where $2^{-1/2} \leq r < 1,$ we note that for $x, y \in X,$ either

\[
\theta(r) d(x, Tx) \leq d(x, y) \quad \text{or} \quad \theta(r) d(Tx, T^2 x) \leq d(Tx, y)
\]

holds. Indeed, if

\[
\theta(r) d(x, Tx) > d(x, y) \quad \text{and} \quad \theta(r) d(Tx, T^2 x) > d(Tx, y),
\]

then we have

\[
d(x, Tx) \leq d(x, y) + d(Tx, y) \\
\quad < \theta(r) \{d(x, Tx) + d(Tx, T^2 x)\} \\
\quad \leq \theta(r) \{d(x, Tx) + r d(x, Tx)\} \\
\quad = d(x, Tx).
\]

This is a contradiction. Since either

\[
\theta(r) d(u_{2n}, u_{2n+1}) \leq d(u_{2n}, z) \quad \text{or} \quad \theta(r) d(u_{2n+1}, u_{2n+2}) \leq d(u_{2n+1}, z)
\]

holds for every $n \in \mathbb{N},$ either

\[
d(u_{2n+1}, Tz) \leq r d(u_{2n}, z) \quad \text{or} \quad d(u_{2n+2}, Tz) \leq r d(u_{2n+1}, z)
\]
holds for every \(n \in \mathbb{N} \). Since \(\{u_n\} \) converges to \(z \), the above inequalities imply there exists a subsequence of \(\{u_n\} \) which converges to \(Tz \). This implies \(Tz = z \). This is a contradiction. Therefore in all the cases, there exists \(j \in \mathbb{N} \) such that \(T^jz = z \). Since \(\{T^n z\} \) is a Cauchy sequence, we obtain \(Tz = z \). That is, \(z \) is a fixed point of \(T \). The uniqueness of a fixed point follows easily from (2). This completes the proof. \(\square \)

The following theorem says that \(\theta(r) \) is the best constant for every \(r \in [0,1) \).

Theorem 3. Define a function \(\theta \) as in Theorem 2. Then for each \(r \in [0,1) \), there exist a complete metric space \((X,d) \) and a mapping \(T \) on \(X \) such that \(T \) does not have a fixed point and
\[
\theta(r) \, d(x,Tx) < d(x,y) \quad \text{implies} \quad d(Tx,Ty) \leq r \, d(x,y)
\]
for all \(x,y \in X \).

Proof. In the case where \(0 \leq r \leq (\sqrt{5} - 1)/2 \), define a complete subset \(X \) of the Euclidean space \(\mathbb{R} \) by \(X = \{ \pm 1 \} \). We also define a mapping \(T \) on \(X \) by \(Tx = -x \) for \(x \in X \). Then \(T \) does not have a fixed point and
\[
\theta(r) \, d(x,Tx) = 2 \geq d(x,y)
\]
for all \(x,y \in X \). In the case where \((\sqrt{5} - 1)/2 < r < 2^{-1/2} \), define a complete subset \(X \) of the Euclidean space \(\mathbb{R} \) as follows: \(X = \{ x_n : n \in \mathbb{N} \cup \{ 0 \} \} \), where \(x_0 = 0 \), \(x_1 = 1 \), \(x_2 = 1-r \) and \(x_n = (1-r-r^2)(-r)^{n-3} \) for \(n \geq 3 \). Define a mapping \(T \) on \(X \) by \(Tx_n = x_{n+1} \) for \(n \in \mathbb{N} \cup \{ 0 \} \). Then \(T \) satisfies the conclusion. In the other case, where \(2^{-1/2} \leq r < 1 \), define a complete subset \(X \) of the Euclidean space \(\mathbb{R} \) as follows:
\[
X = \{ 0,1 \} \cup \{ x_n : n \in \mathbb{N} \cup \{ 0 \} \},
\]
where \(x_n = (1-r)(-r)^{n} \) for \(n \in \mathbb{N} \cup \{ 0 \} \). Define a mapping \(T \) on \(X \) by \(T0 = 1 \), \(T1 = x_0 \) and \(Tx_n = x_{n+1} \) for \(n \in \mathbb{N} \cup \{ 0 \} \). Let us prove that \(T \) satisfies the conclusion. The following are obvious.
- \(d(T0,T1) = r \, d(0,1) \).
- \(\theta(r) \, d(0,T0) \geq \theta(r) \, d(x_n,Tx_n) = d(0,x_n) \) for \(n \in \mathbb{N} \cup \{ 0 \} \).
- \(d(Tx_m,Tx_n) = r \, d(x_m,x_n) \) for \(m,n \in \mathbb{N} \cup \{ 0 \} \).

Also, we have
\[
d(T1,Tx_n) - r \, d(1,x_n) = 1 - 2r - 2(-r)^{n+1} - 2(-r)^{n+2}
\leq 1 - 2r + 2r^{n+1} - 2r^{n+2} = 1 - 2r + 2r^{n+1}(1-r)
\leq 1 - 2r + 2r(1-r) = 1 - 2r^2 \leq 0
\]
for \(n \in \mathbb{N} \cup \{ 0 \} \). This completes the proof. \(\square \)

It is obvious that the set of our contractions in Theorem 2 includes that of the usual contractions. However, our contractions and Kannan mappings are independent. We next show it.

Example 1. Define a complete metric space \(X \) by \(X = \{ (0,0), (4,0), (0,4), (4,5), (5,4) \} \) and its metric \(d \) by \(d((x_1,x_2),(y_1,y_2)) = |x_1 - y_1| + |x_2 - y_2| \). Define a mapping \(T \) on \(X \) by
\[
T(x_1,x_2) = \begin{cases}
(x_1,0) & \text{if } x_1 \leq x_2, \\
(0,x_2) & \text{if } x_1 > x_2.
\end{cases}
\]
Then T satisfies the assumption in Theorem 2, but T is not a Kannan mapping.

Proof. We first note that $d(Tx,Ty) \leq (4/5) d(x,y)$ if $(x,y) \neq ((4,5),(5,4))$ and $(y,x) \neq ((4,5),(5,4))$. Since

$$\theta(r) d((4,5),T(4,5)) > \frac{5}{2} > 2 = d((4,5),(5,4))$$

and $\theta(r) d((5,4),T(5,4)) > d((5,4),(4,5))$ for every $r \in [0,1)$, T satisfies the assumption in Theorem 2. But, since

$$d(T(5,4),T(4,5)) = 8 > 2 = \frac{1}{2} \left(d((4,5),T(4,5)) + d((5,4),T(5,4)) \right),$$

T is not a Kannan mapping.

Example 2. Define a complete metric space X by $X = \{-1, 0, 1, 2\}$ and a mapping T on X by

$$Tx = \begin{cases}
0 & \text{if } x \neq 2, \\
-1 & \text{if } x = 2.
\end{cases}$$

Then T is a Kannan mapping, but T does not satisfy the assumption in Theorem 2.

Proof. Since

$$d(Tx,T2) \leq 1 = \frac{1}{3} d(2,T2) \leq \frac{1}{3} d(x,Tx) + \frac{1}{3} d(2,T2)$$

for all $x \in X$, T is a Kannan mapping. But, since

$$\theta(r) d(1,T1) \leq 1 = d(1,2) \quad \text{and} \quad d(T1,T2) = 1 = d(1,2)$$

for every $r \in [0,1)$, T does not satisfy the assumption in Theorem 2.

3. Metric completeness

In this section, we discuss the metric completeness.

Theorem 4. Let (X,d) be a metric space and define a function θ as in Theorem 2. For $r \in [0,1)$ and $\eta \in (0,\theta(r)]$, let $A_{r,\eta}$ be the family of mappings T on X satisfying the following:

(a) For $x, y \in X$,

$$\eta d(x,Tx) \leq d(x,y) \quad \text{implies} \quad d(Tx,Ty) \leq r d(x,y).$$

Let $B_{r,\eta}$ be the family of mappings T on X satisfying (a) and the following:

(b) $T(X)$ is countably infinite.

(c) Every subset of $T(X)$ is closed.

Then the following are equivalent:

(i) X is complete.

(ii) Every mapping $T \in A_{r,\theta(r)}$ has a fixed point for all $r \in [0,1)$.

(iii) There exist $r \in (0,1)$ and $\eta \in (0,\theta(r)]$ such that every mapping $T \in B_{r,\eta}$ has a fixed point.
Proof. By Theorem 2, (i) implies (ii). Since $B_{r,\eta} \subset A_{r,\theta(r)}$ for $r \in [0, 1)$ and $\eta \in (0, \theta(r))$, (ii) implies (iii). Let us prove (iii) implies (i). We assume (iii). Arguing by contradiction, we also assume that X is not complete. That is, there exists a Cauchy sequence $\{u_n\}$ which does not converge. Define a function from X into $[0, \infty)$ by $f(x) = \lim_n d(x, u_n)$ for $x \in X$. We note that f is well defined because $\{d(x, u_n)\}$ is a Cauchy sequence for every $x \in X$. The following are obvious:

- $f(x) - f(y) \leq d(x, y) \leq f(x) + f(y)$ for $x, y \in X$,
- $f(x) > 0$ for all $x \in X$ and
- $\lim_n f(u_n) = 0$.

Define a mapping T on X as follows: For each $x \in X$, since $f(x) > 0$ and $\lim_n f(u_n) = 0$, there exists $\nu \in \mathbb{N}$ satisfying $f(u_{\nu}) \leq \frac{\eta r}{3 + \eta r} f(x)$. We put $Tx = u_{\nu}$. Then it is obvious that

$$f(Tx) \leq \frac{\eta r}{3 + \eta r} f(x) \quad \text{and} \quad Tx \in \{u_n : n \in \mathbb{N}\}$$

for all $x \in X$. Then $Tx \neq x$ for all $x \in X$ because $f(Tx) < f(x)$. That is, T does not have a fixed point. Since $T(X) \subset \{u_n : n \in \mathbb{N}\}$, (b) holds. Also, it is not difficult to prove (c). Let us prove (a). Fix $x, y \in X$ with $\eta d(x, Tx) \leq d(x, y)$. In the case where $f(y) > 2 f(x)$, we have

$$d(Tx, Ty) \leq f(Tx) + f(Ty) \leq \frac{\eta r}{3 + \eta r} (f(x) + f(y))$$

$$\leq \frac{r}{3} (f(x) + f(y))$$

$$\leq \frac{r}{3} (f(x) + f(y)) + \frac{2r}{3} (f(y) - 2 f(x))$$

$$= r (f(y) - f(x)) \leq r d(x, y).$$

In the other case, where $f(y) \leq 2 f(x)$, we have

$$d(x, y) \geq \eta d(x, Tx) \geq \eta (f(x) - f(Tx))$$

$$\geq \eta \left(1 - \frac{\eta r}{3 + \eta r}\right) f(x) = \frac{3 \eta}{3 + \eta r} f(x)$$

and hence

$$d(Tx, Ty) \leq f(Tx) + f(Ty) \leq \frac{\eta r}{3 + \eta r} (f(x) + f(y))$$

$$\leq \frac{3 \eta r}{3 + \eta r} f(x) \leq r d(x, y).$$

Therefore we have shown (a), that is, $T \in B_{r,\eta}$. By (iii), T has a fixed point which yields a contradiction. Hence we obtain that X is complete. This completes the proof. \qed

As a direct consequence of Theorem 4, we obtain the following.

Corollary 1. For a metric space (X, d), the following are equivalent:

(i) X is complete.

(ii) There exists $r \in (0, 1)$ such that every mapping T on X satisfying the following has a fixed point:

- $\frac{1}{10000} d(x, Tx) \leq d(x, y)$ implies $d(Tx, Ty) \leq r d(x, y)$ for all $x, y \in X$.

4. The Meir-Keeler theorem

In this section, we prove a generalization of the Meir-Keeler fixed point theorem [17]. See also [5], [12], [16, Theorem 1.5.1].

Theorem 5. Let \((X, d)\) be a complete metric space and let \(T\) be a mapping on \(X\). Assume that for each \(\varepsilon > 0\), there exists \(\delta > 0\) such that

1. \((1/2) d(x, Tx) < d(x, y)\) and \(d(x, y) < \varepsilon + \delta\) imply \(d(Tx, Ty) \leq \varepsilon\) and
2. \((1/2) d(x, Tx) < d(x, y)\) implies \(d(Tx, Ty) < d(x, y)\)

for all \(x, y \in X\). Then there exists a unique fixed point \(z\) of \(T\). Moreover \(\lim_n T^n x = z\) for all \(x \in X\).

Remark.

(i) The Meir-Keeler fixed point theorem [17] is a generalization of the Banach contraction principle (Theorem 1). However, Theorem 5 is not a generalization of Theorem 2.

(ii) We note \(\lim_{r \to 0} \theta(r) = 1/2\). By Theorem 3, we can prove that 1/2 is the best constant.

Proof. If \(Tx \neq x\), then it is obvious that \(d(x, Tx) < 2d(x, Tx)\). So, by hypothesis,

\[d(Tx, T^2x) < d(x, Tx)\]

holds for all \(x \in X\) with \(Tx \neq x\). We also note that

\[d(Tx, T^2x) \leq d(x, Tx)\]

holds for all \(x \in X\). Fix \(u \in X\) and define a sequence \(\{u_n\}\) in \(X\) by \(u_n = T^n u\) for \(n \in \mathbb{N}\). Since \(\{d(u_n, u_{n+1})\}\) is a nonincreasing sequence, \(\{d(u_n, u_{n+1})\}\) converges to some \(\alpha \geq 0\). Arguing by contradiction, we assume \(\alpha > 0\). Then \(\{d(u_n, u_{n+1})\}\) is strictly decreasing. Hence \(d(u_n, u_{n+1}) > \alpha\) for every \(n \in \mathbb{N}\). By hypothesis, there exists \(\delta > 0\) such that

- \(d(x, Tx) < 2d(x, y)\) and \(d(x, y) < \alpha + \delta\) imply \(d(Tx, Ty) \leq \alpha\).

From the definition of \(\alpha\), there exists \(j \in \mathbb{N}\) such that \(d(u_j, u_{j+1}) < \alpha + \delta\). So we have \(d(u_{j+1}, u_{j+2}) \leq \alpha\). This is a contradiction. Therefore \(\alpha = 0\). That is, \(\lim_n d(u_n, u_{n+1}) = 0\) holds. Fix \(\varepsilon > 0\). Then there exists \(\delta \in (0, \varepsilon)\) such that

- \(d(x, Tx) < 2d(x, y)\) and \(d(x, y) < \varepsilon + \delta\) imply \(d(Tx, Ty) \leq \varepsilon\).

Let \(\ell \in \mathbb{N}\) such that \(d(u_n, u_{n+1}) < \delta\) for all \(n \in \mathbb{N}\) with \(n \geq \ell\). We shall show

\[d(u_\ell, u_{\ell+m}) < \varepsilon + \delta\]

for \(m \in \mathbb{N}\) by induction. It is obvious that (4) holds when \(m = 1\). We assume (4) holds for some \(m \in \mathbb{N}\). In the case where \(d(u_\ell, u_{\ell+m}) \leq \varepsilon\), we have

\[d(u_\ell, u_{\ell+m+1}) \leq d(u_\ell, u_{\ell+m}) + d(u_{\ell+m}, u_{\ell+m+1}) < \varepsilon + \delta.\]

In the other case, where \(\varepsilon < d(u_\ell, u_{\ell+m}) < \varepsilon + \delta\), since

\[d(u_\ell, u_{\ell+1}) < \delta < \varepsilon < d(u_\ell, u_{\ell+m}) < 2d(u_\ell, u_{\ell+m}),\]

we have \(d(u_{\ell+1}, u_{\ell+m+1}) \leq \varepsilon\) and hence

\[d(u_\ell, u_{\ell+m+1}) \leq d(u_\ell, u_{\ell+1}) + d(u_{\ell+1}, u_{\ell+m+1}) < \delta + \varepsilon.\]

So, by induction, (4) holds for every \(m \in \mathbb{N}\). Therefore we have shown

\[\lim_{n \to \infty} \sup_{m > n} d(u_n, u_m) = 0.\]
This implies that \(\{u_n\} \) is Cauchy. Since \(X \) is complete, \(\{u_n\} \) converges to some point \(z \in X \). We shall show that such \(z \) is a fixed point of \(T \), dividing the following two cases:

- There exists \(\nu \in \mathbb{N} \) such that \(u_\nu = u_{\nu+1} \).
- \(u_n \neq u_{n+1} \) for all \(n \in \mathbb{N} \).

In the first case, \(u_n = u_\nu \) for all \(n \in \mathbb{N} \) with \(n \geq \nu \). Since \(\{u_n\} \) converges to \(z \), we have \(u_n = z \) for all \(n \in \mathbb{N} \) with \(n \geq \nu \). This implies \(Tz = z \). In the second case, we note \(u_n \neq Tu_n \) for \(n \in \mathbb{N} \), so \(\{d(u_n, u_{n+1})\} \) is strictly decreasing. If we assume that

\[
d(u_n, u_{n+1}) \geq 2d(u_n, z) \quad \text{and} \quad d(u_{n+1}, u_{n+2}) \geq 2d(u_{n+1}, z)
\]

hold for some \(n \in \mathbb{N} \), then we have

\[
d(u_n, u_{n+1}) \leq d(u_n, z) + d(u_{n+1}, z) \\
\leq (d(u_n, u_{n+1}) + d(u_{n+1}, u_{n+2})) / 2 \\
< d(u_n, u_{n+1}).
\]

This is a contradiction. That is, either

\[
d(u_n, u_{n+1}) < 2d(u_n, z) \quad \text{or} \quad d(u_{n+1}, u_{n+2}) < 2d(u_{n+1}, z)
\]

holds for all \(n \in \mathbb{N} \). By hypothesis, either

\[
d(u_{n+1}, Tz) < d(u_n, z) \quad \text{or} \quad d(u_{n+2}, Tz) < d(u_{n+1}, z)
\]

holds for all \(n \in \mathbb{N} \). Since \(\{u_n\} \) converges to \(z \), the above inequalities imply there exists a subsequence of \(\{u_n\} \) which converges to \(Tz \). This implies \(Tz = z \). We have shown that \(z \) is a fixed point of \(T \). Finally, arguing by contradiction, suppose there exists another fixed point \(y \) of \(T \). Since

\[
d(z, Tz) = 0 < 2d(z, y),
\]

we have

\[
d(z, y) = d(Tz, Ty) < d(z, y).
\]

This is a contradiction. That is, the fixed point is unique. This completes the proof. \(\square \)

Acknowledgment

The author is very grateful to the referee for his/her suggestions that improved the presentation of this paper.

References

Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550, Japan
E-mail address: suzuki-t@mns.kyutech.ac.jp