Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalized Banach contraction principle that characterizes metric completeness


Author: Tomonari Suzuki
Journal: Proc. Amer. Math. Soc. 136 (2008), 1861-1869
MSC (2000): Primary 54H25; Secondary 54E50
DOI: https://doi.org/10.1090/S0002-9939-07-09055-7
Published electronically: December 6, 2007
MathSciNet review: 2373618
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a fixed point theorem that is a very simple generalization of the Banach contraction principle and characterizes the metric completeness of the underlying space. We also discuss the Meir-Keeler fixed point theorem.


References [Enhancements On Off] (What's this?)

  • 1. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181.
  • 2. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251. MR 0394329 (52:15132)
  • 3. J. Caristi and W. A. Kirk, Geometric fixed point theory and inwardness conditions, Lecture Notes in Math., Vol. 490, pp. 74-83, Springer, Berlin, 1975. MR 0399968 (53:3806)
  • 4. Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273. MR 0356011 (50:8484)
  • 5. -, A new fixed-point theorem for contractive mappings, Publ. Inst. Math. (Beograd), 30 (1981), 25-27. MR 672538 (83m:54082a)
  • 6. E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc., 10 (1959), 974-979. MR 0110093 (22:976)
  • 7. J. Dugundji, Positive definite functions and coincidences, Fund. Math., 90 (1976), 131-142. MR 0400192 (53:4027)
  • 8. I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. MR 0346619 (49:11344)
  • 9. -, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474. MR 526967 (80h:49007)
  • 10. T. K. Hu, On a fixed-point theorem for metric spaces, Amer. Math. Monthly, 74 (1967), 436-437. MR 0210107 (35:1002)
  • 11. R. Kannan, Some results on fixed points - II, Amer. Math. Monthly, 76 (1969), 405-408. MR 0257838 (41:2487)
  • 12. J. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194 (1995), 293-303. MR 1353081 (96h:54033)
  • 13. W. A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., 36 (1976), 81-86. MR 0436111 (55:9061)
  • 14. -, Contraction mappings and extensions in Handbook of metric fixed point theory (W. A. Kirk and B. Sims, Eds.), 2001, pp. 1-34, Kluwer Academic Publishers, Dordrecht. MR 1904272 (2003f:54096)
  • 15. -, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277 (2003), 645-650. MR 1961251 (2003k:47093)
  • 16. M. Kuczma, B. Choczewski and R. Ger, Iterative functional equation, Encyclopedia of Mathematics and Applications, vol. 32, Cambridge University Press, Cambridge, 1990. MR 1067720 (92f:39002)
  • 17. A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329. MR 0250291 (40:3530)
  • 18. S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488. MR 0254828 (40:8035)
  • 19. S. Park, Characterizations of metric completeness, Colloq. Math., 49 (1984), 21-26. MR 774845 (86d:54042)
  • 20. S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital., 4 (1971), 1-11. MR 0305163 (46:4293)
  • 21. P. V. Subrahmanyam, Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phys. Sci., 8 (1974), 445-457. MR 0358749 (50:11208)
  • 22. -, Completeness and fixed-points, Monatsh. Math., 80 (1975), 325-330. MR 0391065 (52:11887)
  • 23. T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440-458. MR 1808147 (2002f:49038)
  • 24. -, Several fixed point theorems concerning $ \tau$-distance, Fixed Point Theory Appl., 2004 (2004), 195-209. MR 2096951
  • 25. -, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math. Prace Mat., 45 (2005), 45-58. MR 2199893 (2006m:54055)
  • 26. J. D. Weston, A characterization of metric completeness, Proc. Amer. Math. Soc., 64 (1977), 186-188. MR 0458359 (56:16562)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54H25, 54E50

Retrieve articles in all journals with MSC (2000): 54H25, 54E50


Additional Information

Tomonari Suzuki
Affiliation: Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550, Japan
Email: suzuki-t@mns.kyutech.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-07-09055-7
Keywords: Banach contraction principle, fixed point, metric completeness, Kannan mapping
Received by editor(s): July 17, 2006
Received by editor(s) in revised form: December 18, 2006
Published electronically: December 6, 2007
Additional Notes: The author is supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology.
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society