Partitioning triples and partially ordered sets

Author:
Albin L. Jones

Journal:
Proc. Amer. Math. Soc. **136** (2008), 1823-1830

MSC (2000):
Primary 03E05, 05D10; Secondary 05A18

DOI:
https://doi.org/10.1090/S0002-9939-07-09170-8

Published electronically:
November 6, 2007

MathSciNet review:
2373614

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if is a partial order and , then

- (a)
- , and
- (b)
- for each .

**1.**J. Baumgartner and A. Hajnal,*A proof (involving Martin's axiom) of a partition relation*, Fund. Math.**78**(1973), no. 3, 193-203. MR**0319768 (47:8310)****2.**P. Erdos and R. Rado,*A partition calculus in set theory*, Bull. Amer. Math. Soc.**62**(1956), 427-489. MR**0081864 (18:458a)****3.**Thomas Jech,*Set theory*, second ed., Springer-Verlag, Berlin, 1997. MR**99b:03061****4.**A. L. Jones,*Some results in the partition calculus*, Ph.D. thesis, Dartmouth College, June 1999.**5.**-,*A short proof of a partition relation for triples*, Electronic Journal of Combinatorics**7(1)**(2000), 1-9. MR**1755613 (2001a:03097)****6.**-,*More on partitioning triples of countable ordinals*, Proceedings of the American Mathematical Society (2007). MR**2262926 (2007i:03054)****7.**E. C. Milner and K. Prikry,*A partition theorem for triples*, Proc. Amer. Math. Soc.**97**(1986), no. 3, 488-494. MR**840635 (87f:04006)****8.**-,*A partition relation for triples using a model of Todorcevic*, Discrete Math.**95**(1991), nos. 1-3, 183-191, Directions in infinite graph theory and combinatorics (Cambridge, 1989). MR**1141938 (93i:03065)****9.**F. P. Ramsey,*On a problem of formal logic*, Proc. London Math. Soc.**30**(1930), 264-286.**10.**S. Todorcevic,*Partition relations for partially ordered sets*, Acta Math.**155**(1985), nos. 1-2, 1-25. MR**793235 (87d:03126)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
03E05,
05D10,
05A18

Retrieve articles in all journals with MSC (2000): 03E05, 05D10, 05A18

Additional Information

**Albin L. Jones**

Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045-2142

Address at time of publication:
2153 Oakdale Rd., Pasadena, Maryland 21122

Email:
alj@mojumi.net

DOI:
https://doi.org/10.1090/S0002-9939-07-09170-8

Keywords:
Countable ordinals,
non-special tree,
partial order,
Ramsey theory,
triples

Received by editor(s):
September 18, 2006

Received by editor(s) in revised form:
March 20, 2007

Published electronically:
November 6, 2007

Additional Notes:
The author would like to thank the University of Kansas for its support of this research.

Communicated by:
Julia Knight

Article copyright:
© Copyright 2007
Albin L. Jones