Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on Mustaţă's computation of multiplier ideals of hyperplane arrangements

Author: Zach Teitler
Journal: Proc. Amer. Math. Soc. 136 (2008), 1575-1579
MSC (2000): Primary 14B05; Secondary 52C35
Published electronically: November 30, 2007
MathSciNet review: 2373586
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 2006, M. Mustaţă used jet schemes to compute the multiplier ideals of reduced hyperplane arrangements. We give a simpler proof using a log resolution and generalize to non-reduced arrangements. By applying the idea of wonderful models introduced by De Concini-Procesi in 1995, we also simplify the result. Indeed, Mustaţă's result expresses the multiplier ideal as an intersection, and our result uses (generally) fewer terms in the intersection.

References [Enhancements On Off] (What's this?)

  • 1. C. De Concini and C. Procesi.
    Wonderful models of subspace arrangements.
    Selecta Math. (N.S.), 1(3):459-494, 1995. MR 1366622 (97k:14013)
  • 2. Eva Maria Feichtner.
    De Concini-Procesi wonderful arrangement models: a discrete geometer's point of view.
    In Combinatorial and computational geometry, volume 52 of Math. Sci. Res. Inst. Publ., pages 333-360. Cambridge Univ. Press, Cambridge, 2005. MR 2178326 (2006i:05178)
  • 3. Robin Hartshorne.
    Algebraic geometry.
    Springer-Verlag, New York, 1977.
    Graduate Texts in Mathematics, No. 52. MR 0463157 (57:3116)
  • 4. Yi Hu.
    A compactification of open varieties.
    Trans. Amer. Math. Soc., 355(12):4737-4753 (electronic), 2003. MR 1997581 (2004d:14080)
  • 5. Robert Lazarsfeld.
    Positivity in algebraic geometry. II, volume 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
    Springer-Verlag, Berlin, 2004.
    Positivity for vector bundles, and multiplier ideals. MR 2095472 (2005k:14001b)
  • 6. Li Li.
    Wonderful compactifications of arrangements of subvarieties, November 2006. arXiv:math.AG/0611412.
  • 7. Mircea Mustaţa.
    Multiplier ideals of hyperplane arrangements.
    Trans. Amer. Math. Soc., 358:5015-5023, 2006. MR 2231883 (2007d:14007)
  • 8. Morihiko Saito.
    Multiplier ideals, b-function, and spectrum of a hyperplane singularity. arXiv:math.A G/0402363, December 2006.
  • 9. N. J. A. Sloane.
    The On-Line Encyclopedia of Integer Sequences, 2006.
    Published electronically at njas/sequences/A000110.
  • 10. Zachariah C. Teitler.
    Multiplier ideals of general line arrangements in $ \mathbb{C}^3$.
    Comm. Algebra (to appear), 2007.
    Also available at arXiv:math.A G/0508308. MR 2324623

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14B05, 52C35

Retrieve articles in all journals with MSC (2000): 14B05, 52C35

Additional Information

Zach Teitler
Affiliation: Department of Mathematics, Southeastern Louisiana University, SLU 10687, Hammond, Louisiana 70401

Keywords: Multiplier ideals, hyperplane arrangements, wonderful models
Received by editor(s): October 12, 2006
Received by editor(s) in revised form: March 1, 2007
Published electronically: November 30, 2007
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society