Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pitt's inequality with sharp convolution estimates


Author: William Beckner
Journal: Proc. Amer. Math. Soc. 136 (2008), 1871-1885
MSC (2000): Primary 58J70, 42B10, 35A15
DOI: https://doi.org/10.1090/S0002-9939-07-09216-7
Published electronically: November 30, 2007
MathSciNet review: 2373619
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sharp $ L^p$ extensions of Pitt's inequality expressed as a weighted Sobolev inequality are obtained using convolution estimates and Stein-Weiss potentials. Optimal constants are obtained for the full Stein-Weiss potential as a map from $ L^p$ to itself which in turn yield semi-classical Rellich inequalities on $ \mathbb{R}^n$. Additional results are obtained for Stein-Weiss potentials with gradient estimates and with mixed homogeneity. New proofs are given for the classical Pitt and Stein-Weiss estimates.


References [Enhancements On Off] (What's this?)

  • 1. G. Barbatis, Best constants for higher-order Rellich inequalities in $ L^p(\Omega)$, Math. Z., 255 (2007) 877-896. MR 2274540
  • 2. W. Beckner, Inequalities in Fourier analysis, Annals Math. 102 (1975), 159-182. MR 0385456 (52:6317)
  • 3. W. Beckner, Geometric inequalities in Fourier analysis, Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton University Press, 1995, pp. 36-68. MR 1315541 (95m:42004)
  • 4. W. Beckner, Pitt's inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), 1897-1905. MR 1254832 (95g:42021)
  • 5. W. Beckner, Sharp inequalities and geometric manifolds, J. Fourier Anal. Appl. 3 (1997), 825-836. MR 1600195 (2000c:58059)
  • 6. W. Beckner, On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc. 129 (2001), 1233-1246. MR 1709740 (2001g:35009)
  • 7. W. Beckner, Weighted inequalities and Stein-Weiss potentials, Forum Math. (in press).
  • 8. W. Beckner, Grushin symmetry - embedding and potentials (preprint, 2007).
  • 9. H. J. Brascamp, E. H. Lieb and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227-237. MR 0346109 (49:10835)
  • 10. E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in $ L_p(\Omega)$, Math. Z. 227 (1998), 511-523. MR 1612685 (99e:58169)
  • 11. S. Eilertsen, On weighted fractional integral inequalities, J. Funct. Anal. 185 (2001), 342-366. MR 1853761 (2002h:26008)
  • 12. G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), 207-238. MR 1448337 (98f:42006)
  • 13. F. Gazzola, H.-Ch. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149-2168. MR 2048513 (2005c:26031)
  • 14. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, 1952. MR 0046395 (13:727e)
  • 15. I. W. Herbst, Spectral theory of the operator $ (p^2 + m^2)^{1/2} - Ze^2/r$, Comm. Math. Phys. 53 (1977), 285-294. MR 0436854 (55:9790)
  • 16. V. F. Kovalenko, M. A. Perelmuter and Ya. A. Semenov, Schrödinger operators with $ L_w^{1/2}(\mathbb{R}^l)$-potentials, J. Math. Phys. 22 (1981), 1033-1044. MR 622855 (83b:35121)
  • 17. E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Annals Math. 118 (1983), 349-374. MR 717827 (86i:42010)
  • 18. H. R. Pitt, Theorems on Fourier series and power series, Duke Math. J. 3 (1937), 747-755. MR 1546029
  • 19. S. Samko, Best constant in the weighted Hardy inequality: the spatial and spherical version, Fract. Calc. Anal. Appl. 8 (2005), 39-52. MR 2179227 (2006m:26032)
  • 20. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970. MR 0290095 (44:7280)
  • 21. E. M. Stein, Analytic continuation of group representations, Adv. Math. 4 (1970), 172-207. MR 0263985 (41:8584)
  • 22. E. M. Stein, Harmonic analysis, Princeton University Press, 1995. MR 1315539 (95i:42001)
  • 23. E. M. Stein and G. Weiss, Fractional integrals on $ n$-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503-514. MR 0098285 (20:4746)
  • 24. D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal. 168 (1999), 121-144. MR 1717839 (2001e:26027)
  • 25. A. Zygmund, Trigonometric series, Cambridge University Press, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58J70, 42B10, 35A15

Retrieve articles in all journals with MSC (2000): 58J70, 42B10, 35A15


Additional Information

William Beckner
Affiliation: Department of Mathematics, The University of Texas at Austin, 1 University Station C1200, Austin, Texas 78712-0257
Email: beckner@math.utexas.edu

DOI: https://doi.org/10.1090/S0002-9939-07-09216-7
Received by editor(s): December 19, 2006
Published electronically: November 30, 2007
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society