Convexity and the Exterior Inverse Problem of Potential Theory

Authors:
Stephen J. Gardiner and Tomas Sjödin

Journal:
Proc. Amer. Math. Soc. **136** (2008), 1699-1703

MSC (2000):
Primary 31B20

Published electronically:
November 30, 2007

MathSciNet review:
2373599

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be bounded solid domains such that their associated volume potentials agree outside . Under the assumption that one of the domains is convex, it is deduced that .

**1.**Dov Aharonov, M. M. Schiffer, and Lawrence Zalcman,*Potato kugel*, Israel J. Math.**40**(1981), no. 3-4, 331–339 (1982). MR**654588**, 10.1007/BF02761373**2.**David H. Armitage and Stephen J. Gardiner,*Classical potential theory*, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001. MR**1801253****3.**Björn Gustafsson,*On quadrature domains and an inverse problem in potential theory*, J. Analyse Math.**55**(1990), 172–216. MR**1094715**, 10.1007/BF02789201**4.**Björn Gustafsson and Makoto Sakai,*Properties of some balayage operators, with applications to quadrature domains and moving boundary problems*, Nonlinear Anal.**22**(1994), no. 10, 1221–1245. MR**1279981**, 10.1016/0362-546X(94)90107-4**5.**A. V. Kondraškov,*On the uniqueness of the reconstruction of certain regions from their exterior gravitational potentials*(Russian) Ill-posed Mathematical Problems and Problems of Mathematical Geophysics, Novosibirsk (1976), pp. 122-129.**6.**P. S. Novikoff,*Sur le problème inverse du potentiel*, C. R. (Dokl.) Acad. Sci. URSS (N.S.) 18 (1938), 165-168.**7.**Henrik Shahgholian,*Convexity and uniqueness in an inverse problem of potential theory*, Proc. Amer. Math. Soc.**116**(1992), no. 4, 1097–1100. MR**1137234**, 10.1090/S0002-9939-1992-1137234-2**8.**Tomas Sjödin,*On the structure of partial balayage*, Nonlinear Anal.**67**(2007), no. 1, 94–102. MR**2313881**, 10.1016/j.na.2006.05.001**9.**Lawrence Zalcman,*Some inverse problems of potential theory*, Integral geometry (Brunswick, Maine, 1984) Contemp. Math., vol. 63, Amer. Math. Soc., Providence, RI, 1987, pp. 337–350. MR**876329**, 10.1090/conm/063/876329

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
31B20

Retrieve articles in all journals with MSC (2000): 31B20

Additional Information

**Stephen J. Gardiner**

Affiliation:
School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

Email:
stephen.gardiner@ucd.ie

**Tomas Sjödin**

Affiliation:
School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

Email:
tomas.sjodin@ucd.ie

DOI:
https://doi.org/10.1090/S0002-9939-07-09228-3

Received by editor(s):
February 19, 2007

Published electronically:
November 30, 2007

Additional Notes:
This research was supported by Science Foundation Ireland under Grant 06/RFP/MAT057

Communicated by:
Juha M. Heinonen

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.