The depth of an ideal with a given Hilbert function
Authors:
Satoshi Murai and Takayuki Hibi
Journal:
Proc. Amer. Math. Soc. 136 (2008), 15331538
MSC (2000):
Primary 13C15; Secondary 13D40
Published electronically:
January 17, 2008
MathSciNet review:
2373580
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let denote the polynomial ring in variables over a field with each . Let be a homogeneous ideal of with and the Hilbert function of the quotient algebra . Given a numerical function satisfying for some homogeneous ideal of , we write for the set of those integers such that there exists a homogeneous ideal of with and with . It will be proved that one has either for some or .
 1.
Eric
Babson, Isabella
Novik, and Rekha
Thomas, Reverse lexicographic and lexicographic shifting, J.
Algebraic Combin. 23 (2006), no. 2, 107–123. MR 2223682
(2007a:13026), http://dx.doi.org/10.1007/s1080100669193
 2.
Anna
Maria Bigatti, Upper bounds for the Betti numbers of a given
Hilbert function, Comm. Algebra 21 (1993),
no. 7, 2317–2334. MR 1218500
(94c:13014), http://dx.doi.org/10.1080/00927879308824679
 3.
Winfried
Bruns and Jürgen
Herzog, CohenMacaulay rings, Cambridge Studies in Advanced
Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
(95h:13020)
 4.
Aldo
Conca, Koszul homology and extremal
properties of Gin and Lex, Trans. Amer. Math.
Soc. 356 (2004), no. 7, 2945–2961. MR 2052603
(2005c:13012), http://dx.doi.org/10.1090/S0002994703033932
 5.
Shalom
Eliahou and Michel
Kervaire, Minimal resolutions of some monomial ideals, J.
Algebra 129 (1990), no. 1, 1–25. MR 1037391
(91b:13019), http://dx.doi.org/10.1016/00218693(90)90237I
 6.
Jürgen
Herzog, Generic initial ideals and graded Betti numbers,
Computational commutative algebra and combinatorics (Osaka, 1999) Adv.
Stud. Pure Math., vol. 33, Math. Soc. Japan, Tokyo, 2002,
pp. 75–120. MR 1890097
(2003b:13021)
 7.
Heather
A. Hulett, Maximum Betti numbers of homogeneous ideals with a given
Hilbert function, Comm. Algebra 21 (1993),
no. 7, 2335–2350. MR 1218501
(94c:13015), http://dx.doi.org/10.1080/00927879308824680
 8.
Keith
Pardue, Deformation classes of graded modules and maximal Betti
numbers, Illinois J. Math. 40 (1996), no. 4,
564–585. MR 1415019
(97g:13029)
 1.
 E. Babson, I. Novik and R. Thomas, Reverse lexicographic and lexicographic shifting, J. Algebraic Combin. 23 (2006), 107123. MR 2223682 (2007a:13026)
 2.
 A. M. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. in Algebra 21 (1993), 23172334. MR 1218500 (94c:13014)
 3.
 W. Bruns and J. Herzog, ``CohenMacaulay rings,'' Revised Edition, Cambridge University Press, 1998. MR 1251956 (95h:13020)
 4.
 A. Conca, Koszul homology and extremal properties of Gin and Lex, Trans. Amer. Math. Soc. 356 (2004), no. 7, 29452961. MR 2052603 (2005c:13012)
 5.
 S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. of Algebra 129 (1990), 125. MR 1037391 (91b:13019)
 6.
 J. Herzog, Generic initial ideals and graded Betti numbers, in ``Computational Commutative Algebra and Combinatorics'' (T. Hibi, Ed.), Advanced Studies in Pure Math., Volume 33, 2002, pp. 75120. MR 1890097 (2003b:13021)
 7.
 H. A. Hulett, Maximum Betti numbers for a given Hilbert function, Comm. in Algebra 21 (1993), 23352350. MR 1218501 (94c:13015)
 8.
 K. Pardue, Deformation classes of graded modules and maximal Betti numbers. Illinois J. Math. 40 (1995), 564585. MR 1415019 (97g:13029)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
13C15,
13D40
Retrieve articles in all journals
with MSC (2000):
13C15,
13D40
Additional Information
Satoshi Murai
Affiliation:
Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, 5600043, Japan
Email:
smurai@ist.osakau.ac.jp
Takayuki Hibi
Affiliation:
Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, 5600043, Japan
Email:
hibi@math.sci.osakau.ac.jp
DOI:
http://dx.doi.org/10.1090/S0002993908090679
PII:
S 00029939(08)090679
Keywords:
Hilbert functions,
depth,
lexsegment ideals
Received by editor(s):
August 9, 2006
Received by editor(s) in revised form:
December 5, 2006
Published electronically:
January 17, 2008
Additional Notes:
The first author is supported by JSPS Research Fellowships for Young Scientists
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
