Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The depth of an ideal with a given Hilbert function


Authors: Satoshi Murai and Takayuki Hibi
Journal: Proc. Amer. Math. Soc. 136 (2008), 1533-1538
MSC (2000): Primary 13C15; Secondary 13D40
DOI: https://doi.org/10.1090/S0002-9939-08-09067-9
Published electronically: January 17, 2008
MathSciNet review: 2373580
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A = K[x_1, \ldots, x_n]$ denote the polynomial ring in $ n$ variables over a field $ K$ with each $ \operatorname{deg} x_i = 1$. Let $ I$ be a homogeneous ideal of $ A$ with $ I \neq A$ and $ H_{A/I}$ the Hilbert function of the quotient algebra $ A / I$. Given a numerical function $ H : {\mathbb{N}} \to {\mathbb{N}}$ satisfying $ H=H_{A/I}$ for some homogeneous ideal $ I$ of $ A$, we write $ \mathcal{A} _H$ for the set of those integers $ 0 \leq r \leq n$ such that there exists a homogeneous ideal $ I$ of $ A$ with $ H_{A/I} = H$ and with $ \operatorname{depth} A / I = r$. It will be proved that one has either $ \mathcal{A}_H = \{ 0, 1, \ldots, b \}$ for some $ 0 \leq b \leq n$ or $ \vert{\mathcal{A}}_H\vert = 1$.


References [Enhancements On Off] (What's this?)

  • 1. E. Babson, I. Novik and R. Thomas, Reverse lexicographic and lexicographic shifting, J. Algebraic Combin. 23 (2006), 107-123. MR 2223682 (2007a:13026)
  • 2. A. M. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. in Algebra 21 (1993), 2317-2334. MR 1218500 (94c:13014)
  • 3. W. Bruns and J. Herzog, ``Cohen-Macaulay rings,'' Revised Edition, Cambridge University Press, 1998. MR 1251956 (95h:13020)
  • 4. A. Conca, Koszul homology and extremal properties of Gin and Lex, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2945-2961. MR 2052603 (2005c:13012)
  • 5. S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. of Algebra 129 (1990), 1-25. MR 1037391 (91b:13019)
  • 6. J. Herzog, Generic initial ideals and graded Betti numbers, in ``Computational Commutative Algebra and Combinatorics'' (T. Hibi, Ed.), Advanced Studies in Pure Math., Volume 33, 2002, pp. 75-120. MR 1890097 (2003b:13021)
  • 7. H. A. Hulett, Maximum Betti numbers for a given Hilbert function, Comm. in Algebra 21 (1993), 2335-2350. MR 1218501 (94c:13015)
  • 8. K. Pardue, Deformation classes of graded modules and maximal Betti numbers. Illinois J. Math. 40 (1995), 564-585. MR 1415019 (97g:13029)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13C15, 13D40

Retrieve articles in all journals with MSC (2000): 13C15, 13D40


Additional Information

Satoshi Murai
Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, 560-0043, Japan
Email: s-murai@ist.osaka-u.ac.jp

Takayuki Hibi
Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, 560-0043, Japan
Email: hibi@math.sci.osaka-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-08-09067-9
Keywords: Hilbert functions, depth, lexsegment ideals
Received by editor(s): August 9, 2006
Received by editor(s) in revised form: December 5, 2006
Published electronically: January 17, 2008
Additional Notes: The first author is supported by JSPS Research Fellowships for Young Scientists
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society