SPACES BETWEEN H^1 AND L^1

WAEL ABU-SHAMMALA AND ALBERTO TORCHINSKY

(Communicated by Michael T. Lacey)

Abstract. In this paper we consider the spaces X_s that lie between $H^1(R^n)$ and $L^1(R^n)$. We discuss their interpolation properties and the behavior of maximal functions and singular integrals acting on them.

Because of their similarities, but mainly because of their differences, it is a matter of interest to determine the relationship between the Hardy space $H^1(R^n)$ and the space of integrable functions $L^1(R^n)$. The purpose of this paper is to gain a better understanding of the gap that separates them. We thus continue with the study of the spaces $X_s(R^n)$ that lie between H^1 and L^1, and discuss their interpolation properties and the behavior of maximal functions and singular integrals acting on them.

The spaces X_s were introduced by Sweezy; see [10]. They form a nested family that starts at $H^1 = X_1$ and approaches L^1_0, the subspace of L^1 functions with vanishing integral, as $s \to \infty$. Here we consider the whole range of X_s spaces. First, $X_s = H^1$ for $0 < s \leq 1$; also, $X_\infty = L^1_0$; see [1]. Further we show that, for $f \in X_s$,

$$K(t, f; H^1, L^1) \leq \min(t, t^{1/s'}) \|f\|_{X_s}.$$

This estimate allows us to interpolate between H^1 and L^1. In particular, it gives the fact that X_s is continuously embedded in the Hardy-Lorentz space $H^{1,r}$ consisting of those distributions with non-tangential maximal function in the Lorentz space $L^{1,r}$, for $1 < s < r \leq \infty$. Therefore, the spaces $H^{1,s} \cap L^1$, $1 \leq s < \infty$, also form a nested family of subspaces of L^1 that increase from H^1 to L^1. As for Calderón-Zygmund singular integral operators, they map X_s into $L^{1,r}$ for $1 < s < r \leq \infty$. We conclude the paper by introducing the closely related family of X^s spaces, $0 < s \leq \infty$, that increases towards L^1, and then showing how X_s and X^s atoms can be used to build other spaces, including analogues of the local spaces considered in [7], that lie between H^1 and L^1.

1. Atomic decompositions in Banach spaces

Our first result is of a general nature and will ensure that the various atomic spaces considered below are indeed Banach spaces.

Received by the editors March 19, 2007.

2000 Mathematics Subject Classification. Primary 42B25.

Key words and phrases. K functional.

©2008 American Mathematical Society
Let \(A \) be a non-empty subset of the unit ball of a Banach space \((B, \| \cdot \|)\). The atomic space \(A \) spanned by \(A \) consists of all those \(\varphi \in B \) of the form

\[
\varphi = \sum \lambda_j a_j, \quad \sum |\lambda_j| < \infty, a_j \in A.
\]

It is readily seen that, endowed with the atomic norm \(\| \varphi \|_A = \inf \{ \sum_1^\infty |\lambda_j| : \varphi = \sum_1^\infty \lambda_j a_j \} \), \(A \) becomes a normed space. In fact, it is also complete.

Lemma 1.1. The atomic space \((A, \| \cdot \|_A)\) is a Banach space.

Proof. Since for \(\varphi = \sum_1^\infty \lambda_j a_j \) we have \(\| \varphi \| \leq \sum_1^\infty |\lambda_j| \), it readily follows that \(\| \varphi \| \leq \| \varphi \|_A \) and \(A \) is continuously embedded in \(B \).

To verify that \((A, \| \cdot \|_A)\) is complete, it suffices to show that if \(\{ \varphi_n \} \) is a sequence of elements in \(A \) such that \(\sum_1^\infty \| \varphi_n \|_A < \infty \), then the sum converges to some \(\varphi \) in \(A \), i.e., for some \(\varphi \in A \), \(\lim_{N \to \infty} \| \varphi - \sum_{n=1}^N \varphi_n \|_A = 0 \). First observe that, since \(\sum_1^\infty \| \varphi_n \| < \infty \), also the sum converges to some \(\varphi \) in \(B \). We will show that \(\varphi \in A \), and that the sum also converges to \(\varphi \) in \(A \).

Let \(\varphi_n = \sum_{j=1}^\infty \lambda_{j,n} a_j, n \) where the \(\lambda_{j,n} \)'s satisfy \(\sum_{j=1}^\infty |\lambda_{j,n}| \leq 2 \| \varphi_n \|_A, n = 1, 2, \ldots \). Having fixed these decompositions, we may restrict our attention to the countable set of atoms \(\{a_j\} \). So, we rename these elements \(\{a_j\} \) and, by adding zeroes to the original \(\lambda_{j,n} \)'s as needed, we have \(\varphi_n = \sum_{j=1}^\infty \lambda_{j,n} a_j \) for all \(n \). Clearly \(\sum_{n=1}^\infty \sum_{j=1}^\infty |\lambda_{j,n}| < \infty \). Moreover, if \(\mu_j = \sum_{n=1}^\infty \lambda_{j,n} \), then \(\sum_j |\mu_j| \leq \sum_{j=1}^\infty \sum_{n=1}^\infty |\lambda_{j,n}| < \infty \). Now, since \(\varphi = \sum \varphi_n = \sum_{j=1}^\infty \mu_j a_j, \varphi \in A \). Finally, given \(\varepsilon > 0 \), let \(N_0 \) be such that \(\sum_{n=N}^\infty \sum_{j=1}^\infty |\lambda_{j,n}| \leq \varepsilon \), for \(N \geq N_0 \). Then, for \(N \geq N_0 \),

\[
\| \varphi - \sum_{j=1}^\infty \left(\sum_{n=1}^{N-1} \lambda_{j,n} \right) a_j \|_A = \| \sum_{j=1}^\infty \left(\sum_{n=N}^\infty \lambda_{j,n} \right) a_j \|_A \\
\leq \sum_{n=N}^\infty \sum_{j=1}^\infty |\lambda_{j,n}| \leq \varepsilon,
\]

and we have finished. \(\square \)

2. The spaces \(X_s \)

For \(1 < q \leq 2 \) with conjugate \(2 \leq p < \infty, 1/p + 1/q = 1 \), and \(0 < s \leq \infty \), we say that a compactly supported function \(a \) with vanishing integral is a \((q, s)\) atom with defining cube \(Q \) if

\[
supp(a) \subseteq Q, \quad \int_Q a(x) \, dx = 0, \quad p^{1/s} |Q| \left(\frac{1}{|Q|} \int_Q |a(x)|^q \, dx \right)^{1/q} \leq 1.
\]

When \(s = \infty \), \(a \) is a usual \(L^q \) 1-atom.

We denote by \(A_s \) the collection of \((q, s)\) atoms, \(0 < s \leq \infty \). Since for \(a \in A_s \) we have

\[
\int_Q |a| \leq |Q| \left(\frac{1}{|Q|} \int_Q |a(x)|^q \, dx \right)^{1/q} \leq p^{-1/s} \leq 1,
\]

\(A_s \) is contained in the unit ball of \(L^1 \), and Lemma 1.1 applies. The resulting Banach space is \(X_s(R^n) = X_s \), the space introduced by Sweezy, who also showed that \(X_1 = H^1 \); see [10].

As a first step in determining the relationship between the \(X_s \)'s for the different values of \(s \) we have
Lemma 2.1. Suppose \(a \) is a \((q, s)\) atom. Then,
\[
\|a\|_{X_s} \leq p^{1/u-1/s}, \quad 0 < u \leq \infty.
\]
Proof. Since for a \((q, s)\) atom \(a \) we have
\[
p^{1/u}|Q| \left(\frac{1}{|Q|} \int_Q \left[\frac{|a(x)|}{p^{1/u-1/s}} \right]^q \, dx \right)^{1/q} \leq 1,
\]
the conclusion follows readily. \(\square \)

From Lemma 2.1 we get \(\|f\|_{X_s} \leq \|f\|_{X_r}, \) \(0 < r \leq s \leq \infty, \) and the \(X_s \)'s are nested. Also, the norm in \(X_s \) reduces to the atomic \(H^1 \) norm for \(0 < s < 1. \)

Proposition 2.1. Suppose \(0 < s < 1. \) Then \(X_s = H^1, \) with equivalent norms.

Proof. We have already noted that \(\|f\|_{H^1} \leq \|f\|_{X_s} \). Now let \(f \in H^1 \) have an atomic decomposition \(f = \sum_j \lambda_j a_j \) in terms of \(L^\infty 1\)-atoms \(a_j. \) Then,
\[
2^{1/s}|Q| \left(\frac{1}{|Q|} \int_Q \left[\frac{|a_j(x)|}{2^{1/s}} \right]^2 \, dx \right)^{1/2} \leq 1,
\]
a \(\lambda_j(x)/2^{1/s} \) is a \((2, s)\) atom, and \(\|f\|_{X_s} \leq 2^{1/s} \sum_j |\lambda_j| \). Taking the infimum over all possible decompositions of \(f \) it follows that \(\|f\|_{X_s} \leq 2^{1/s} \|f\|_{H^1}, \) and we have finished. \(\square \)

The situation is different for \(s > 1. \) As the \(q_j \)'s approach 1, the \(p_j \)'s tend to \(\infty, \) the sums escape \(H^1, \) and \(X_s \neq H^1. \) In fact, \(X_s \) contains strictly \(X_r, \) \(1 \leq r < s, \) and, although \(X_r \) is densely embedded in \(X_s \) for \(r < s, \) it is of first category in \((X_s, \| \cdot \|_{X_s}). \)

Concerning \(s \) large, let \(X = \bigcup_{s<\infty} X_s. \) We introduce a topology in \(X \) that is easier to deal with than the inductive topology there. For \(f \in X, \) let \(\|f\|_{X} = \lim_{s \to \infty} \|f\|_{X_s}. \) It is not hard to see that \(\| \cdot \|_{X} \) is a norm. The homogeneity and triangle inequality follow easily. Moreover, if \(\|f\|_{X} = 0, \|f\|_{1} = 0, \) and \(f = 0 \) a.e.

In fact, for each \(s, \) the inclusion mapping is continuous from \(X_s \) to \((X, \| \cdot \|_{X}),\) and, consequently, \(\lim X_s \) is also continuously included in \(X. \) Similarly, \((X, \| \cdot \|_{X}) \) is continuously embedded in \((X_\infty, \| \cdot \|_{X_\infty}), \) but \(X \) and \(X_\infty \) are not the same space. To see this note that \(X_r \) is of first category in \(X_\infty \) for \(r < \infty, \) and the same is true for \(X: \) if \(U \) is open in \(X_\infty, \) it cannot be open in any \(X_r, \) and hence it is not open in \(X. \) Finally, \(X_\infty = L^1_0; \) see [1].

2.1. \(X_s \) as an intermediate space between \(X_{s_1} \) and \(X_{s_2}. \) Recall that the \(K \) functional of \(f \in X_{s_1} + X_{s_2} \) at \(t > 0 \) is defined by
\[
K(t; f; X_{s_1}, X_{s_2}) = \inf_{f = f_1 + f_2} \|f_1\|_{X_{s_1}} + t \|f_2\|_{X_{s_2}},
\]
where \(f = f_1 + f_2, f_1 \in X_{s_1} \) and \(f_2 \in X_{s_2}. \) We begin by estimating the \(K \) functional for \(f \in X_s, 1 \leq s_1 < s < s_2 \leq \infty. \) The reader will have no difficulty in verifying that a similar result holds with \(X \) in place of \(X_\infty. \)

Lemma 2.2. Given \(1 \leq s_1 < s < s_2 \leq \infty, \) let \(0 < \eta < 1 \) be given by \(1/s = (1-\eta)/s_1 + \eta/s_2. \) Then, for \(f \in X_s, \)
\[
K(t; f; X_{s_1}, X_{s_2}) \leq \min \left(t, t^\eta \right) \|f\|_{X_s}.
\]
Proof. Since $X_s \leftrightarrow X_{s_2}$, $K(t, f; X_{s_1}, X_{s_2}) \leq t \|f\|_{X_{s_2}} \leq t \|f\|_{X_s}$. This estimate suffices for t small.

Suppose now that t is large, $t > 1$, say, and let $\alpha > 0$ be given by $1/\alpha = 1/s_1 - 1/s_2$. Let $f \in X_s$ have an atomic decomposition $f = \sum_j \lambda_j a_j$ in terms of (q_j, s) atoms a_j, and let p_j denote the conjugate exponent to q_j. Finally, put $J_1 = \{j : p_j \leq t^\alpha\}$ and $J_2 = \{j : p_j > t^\alpha\}$. By Lemma 2.1 we have

$$\left\| \sum_{j \in J_1} \lambda_j a_j \right\|_{X_{s_1}} \leq \sum_{j \in J_1} |\lambda_j| \|a_j\|_{X_{s_1}} \leq \sum_{j \in J_1} |\lambda_j| p_j^{1/s_1 - 1/s} \leq t^\alpha \sum_{j \in J_1} |\lambda_j|,$$

$$\left\| \sum_{j \in J_2} \lambda_j a_j \right\|_{X_{s_2}} \leq \sum_{j \in J_2} |\lambda_j| \|a_j\|_{X_{s_2}} \leq \sum_{j \in J_2} |\lambda_j| p_j^{1/s_2 - 1/s} \leq t^\alpha \sum_{j \in J_2} |\lambda_j|.$$

Now, since, as is readily seen, $\alpha(1/s_1 - 1/s) = \eta$ and $\alpha(1/s_2 - 1/s) = \eta - 1$, we get

$$K(t, f; X_{s_1}, X_{s_2}) \leq \sum_{j \in J_1} \lambda_j a_j \left\|X_{s_1}\right\| + t \left\| \sum_{j \in J_2} \lambda_j a_j \left\|X_{s_2}\right\| \leq t^\eta \sum_j |\lambda_j|.$$

Thus, taking the infimum over the decompositions of f in X_s, it follows that

$$K(t, f; X_{s_1}, X_{s_2}) \leq t^\eta \|f\|_{X_s}.$$

The conclusion now obtains by combining the estimates for t small and t large. \qed

Corollary 2.1.1. Let $1 < s < \infty$. Then, for $f \in X_s$,

$$K(t, f; H^1, L^1) \leq \min \left(t, t^{1/s} \right) \|f\|_{X_s}.$$

Proposition 2.2. Let $f \in X_s$, $1 < s < \infty$. Then f is in the Hardy-Lorentz space $H^{1,r}$, $r > s$, and $\|f\|_{H^{1,r}} \leq c_r \|f\|_{X_s}$, $c_r = O(c/(1/s - 1/r)).$

Proof. Let $f \in X_s$. We will show that the non-tangential maximal function Nf is in $L^{1,r}$ for $r > s$. Since the non-tangential maximal function of a function in H^1 is in L^1, and that of a function in L^1 is in $L^{1,\infty}$, by elementary interpolation considerations and Corollary 2.1.1 it follows that

$$K(t, Nf; L^1, L^{1,\infty}) \leq c K(t, f; H^1, L^1) \leq c \min(t, t^{1/s'}) \|f\|_{X_s}.$$

Given $1 < s < r < \infty$, let $1/s' < \theta < 1$ be chosen so that $1/r = 1 - \theta$. Integrating the above inequality we get

$$\|Nf\|_{(L^{1,1,\infty})_u} \leq c \left(\int_0^\infty \left(\frac{\min(t, t^{1/s'})}{t^{q\theta}} \right)^{s} \frac{dt}{t} \right) \|f\|_{X_s} \leq c_r \|f\|_{X_s}.$$

Clearly, $c_r \leq c/(1/s - 1/r)$. Furthermore, since $s < r$, we also have (see [2])

$$\|Nf\|_{1,r} \sim \|Nf\|_{(L^{1,1,\infty})_u} \leq c \|Nf\|_{(L^{1,1,\infty})_u} \leq c \|Nf\|_{(L^{1,1,\infty})_u},$$

and the conclusion follows by combining the two estimates. \qed
Lemma 2.2 applies to Calderón-Zygmund singular integrals, and other operators, such as the Marcinkiewicz integral (see [4]) that map H^1 into L^1, and L^1 into weak L^1. Thus, these operators also map X_s into the Lorentz space $L^{1,r}$, for $1 < s < r \leq \infty$. It also applies to some Calderón-Zygmund singular integral operators with rough kernels that are known to be of weak-type $(1,1)$ (see [8]) and to map H^1 into $L^{1,2}$ (see [9]). Lemma 2.2 then gives that they also map X_s into $L^{1,r}$ for $r > 2s$.

3. Concluding remarks

In order to reach L^1 from H^1, one more atom, this one with non-vanishing integral, needs to be added to the families A_s; the characteristic function of Q_1, the cube of sidelength 1 centered at the origin, will do. Let X^s denote the Banach space spanned by $A_s \cup \chi_{Q_1}$, $1 \leq s \leq \infty$, and note that if $f \in X^s$ has an atomic decomposition of the form $f = \sum_j \lambda_j a_j + \lambda \chi_{Q_1}$, λ is uniquely determined and is equal to $\int_{R^n} f$. Thus, for f in X^s we have $\|f\|_{X^s} = \inf \sum_j |\lambda_j| + |\lambda|$, where the infimum is taken over the atomic decompositions of f. In other words, $X^s = X_s + sp(\chi_{Q_1})$, in the sense of the sum of Banach spaces. Moreover, the family X^s is nested and reaches L^1. Other than this important property, the family X^s behaves very much like X_s, and, consequently, we only give the description of its dual. It is the space BMO^s consisting of those functions $\varphi(x)$ such that

$$A(\varphi) = \sup_{p > 1} \frac{1}{p^{1/s}} \sup_Q \left(\frac{1}{|Q|} \int_Q |\varphi(x) - \varphi_Q|^p dx \right)^{1/p} < \infty,$$

$$B(\varphi) = \left| \int_{Q_1} \varphi(x) dx \right| < \infty,$$

normed with $\|\varphi\|_{BMO^s} = \max(A(\varphi), B(\varphi))$, $1 \leq s \leq \infty$. We are grateful to the referee for pointing out that the Chang-Wilson-Wolff inequality (see [3]) provides a sufficient condition for a function to be in BMO^2. Of course, the dual of X^∞ is L^∞; see [1].

One can also define spaces analogous to the local version of H^1 spaces at the origin introduced in [7], with the H^1 atoms there replaced by X_s atoms. Let Q_δ denote the cube of sidelength δ centered at the origin. The family C_s of central (q,s) atoms consists of those $a \in A_s$ with defining cube Q_δ for some $\delta > 0$. The atomic space generated by C_s is denoted HX_s, for $1 \leq s \leq \infty$.

HX_1 is a dense subset of H^1 which is embedded continuously in H^1 and, as we will see below, it is not H^1. The HX_s's form a nested family of subspaces of L^1_0 and, for each s, HX_s is a dense subset of X_s continuously embedded in X_s.

The dual of HX_s is the space $CMO(s)$ which consists of those functions φ such that

$$\|\varphi\|_{CMO(s)} = \sup_{p > 1} \sup_{\delta > 0} \left(\frac{1}{|Q_\delta|} \int_{Q_\delta} |\varphi(x) - \varphi_{Q_\delta}|^p dx \right)^{1/p} < \infty, \quad s < \infty,$$

$$\|\varphi\|_{CMO(\infty)} = \sup_{p > 1} \sup_{\delta > 0} \left(\frac{1}{|Q_\delta|} \int_{Q_\delta} |\varphi(x) - \varphi_{Q_\delta}|^p dx \right)^{1/p} < \infty, \quad s = \infty.$$
Now, $\text{CMO}(1)$ strictly contains BMO. To see this consider, for $n = 1$,

$$
\varphi(x) = \begin{cases}
\ln|x+2|, & -\infty < x < -2, \\
0, & -2 \leq x \leq -1, \\
\ln|x+1|, & -1 < x < \infty.
\end{cases}
$$

φ is in $\text{CMO}(1)$ but not in BMO, which shows that, unlike X_1, HX_1 is not H^1. The space $\text{CMO}(\infty)$ coincides with $L^{\infty,*}$, the dual of L_0, as a set of functions, but with a weaker norm.

Finally, let HX^s denote the Banach space spanned by $C_s \cup \chi_{Q_1}$. The HX^s's form an increasing family of subspaces of L^1, and HX^s contains strictly HX_s. HX^∞ is close to L^1, so the HX^s's cover the gap left by the HX_s's. The dual of HX^s is CMO^s, which consists of all functions φ in $\text{CMO}(s)$, but normed with

$$
\|\varphi\|_{\text{CMO}^s} = \|\varphi\|_{\text{CMO}(s)} + \left| \int_{Q_1} \varphi(x) \, dx \right|, \quad 1 \leq s < \infty.
$$

References

Department of Mathematics, Indiana University, Bloomington, Indiana 47405

E-mail address: wabusham@indiana.edu

Department of Mathematics, Indiana University, Bloomington, Indiana 47405

E-mail address: torchins@indiana.edu