ON THE SUM OF THE INDEX OF A PARABOLIC SUBALGEBRA AND OF ITS NILPOTENT RADICAL

RUPERT W. T. YU

(Communicated by Dan M. Barbasch)

Abstract. In this short note, we investigate the following question of Panyushev stated in 2003: “Is the sum of the index of a parabolic subalgebra of a semisimple Lie algebra g and the index of its nilpotent radical always greater than or equal to the rank of g?” Using the formula for the index of parabolic subalgebras conjectured by Tauvel and the author and proved by Fauquant-Millet and Joseph in 2005 and Joseph in 2006, we give a positive answer to this question. Moreover, we also obtain a necessary and sufficient condition for this sum to be equal to the rank of g. This provides new examples of direct sum decomposition of a semisimple Lie algebra verifying the “index additivity condition” as stated by Raïs.

1. Introduction

Let \mathfrak{g} be a Lie algebra over an algebraically closed field \mathbb{k} of characteristic zero. For $f \in \mathfrak{g}^*$, we denote by $\mathfrak{g}^f = \{ X \in \mathfrak{g}; f([X,Y]) = 0 \text{ for all } Y \in \mathfrak{g} \}$, the annihilator of f for the coadjoint representation of \mathfrak{g}. The index of \mathfrak{g}, denoted by $\chi(\mathfrak{g})$, is defined to be

$$\chi(\mathfrak{g}) = \min_{f \in \mathfrak{g}^*} \dim \mathfrak{g}^f.$$

It is well known that if \mathfrak{g} is an algebraic Lie algebra and G denotes its algebraic adjoint group, then $\chi(\mathfrak{g})$ is the transcendence degree of the field of G-invariant rational functions on \mathfrak{g}^*.

The index of a semisimple Lie algebra \mathfrak{g} is equal to the rank of \mathfrak{g}. This can be obtained easily from the isomorphism between \mathfrak{g} and \mathfrak{g}^* via the Killing form. There has been quite a lot of recent work on the determination of the index of certain subalgebras of a semisimple Lie algebra: parabolic subalgebras and related subalgebras ([2], [9], [13], [8]), centralizers of elements and related subalgebras ([10], [1], [15], [7]).

Let \mathfrak{g} be a semisimple Lie algebra, \mathfrak{p} a parabolic subalgebra of \mathfrak{g} and \mathfrak{u} (resp. \mathfrak{l}) the nilpotent radical (resp. a Levi factor) of \mathfrak{p}. In [10, Corollary 1.5 (i)], Panyushev showed that

$$\chi(\mathfrak{p}) + \chi(\mathfrak{u}) \leq \dim \mathfrak{l}.$$
He then suggested [10, Remark (ii) of Section 6] that

\[
\chi(p) + \chi(u) \geq rk g.
\]

For example, it is well known that if \(b \) is a Borel subalgebra of \(g \) and \(n \) is its nilpotent radical, then \(\chi(b) + \chi(n) = rk g \) (see for example [12], [14, Chapter 40]). It is therefore also interesting to characterise parabolic subalgebras where equality holds in (2). Indeed, in [11], Raïs looked for examples of direct sum decompositions \(g = m \oplus n \) verifying the “index additivity condition”, namely \(m \) and \(n \) are Lie subalgebras of \(g \) and

\[
\chi(g) = \chi(m) + \chi(n).
\]

If \(u_- \) denotes the nilpotent radical of the opposite parabolic subalgebra \(p_- \) of \(p \), then \(g = p \oplus u_- \) and the Lie algebras \(u \) and \(u_- \) are isomorphic. Thus parabolic subalgebras such that equality holds in (2) would provide examples of direct sum decompositions verifying the index additivity condition.

Using the formula conjectured in [13] and proved in [3, 6] for the index of parabolic subalgebras, we obtain a formula for the sum \(\chi(p) + \chi(u) \). By a careful analysis of root systems, we prove inequality (2) and give a necessary and sufficient condition for the equality to hold in (2) (see Theorem 2.2).

To describe the index of a parabolic subalgebra and the index of its nilpotent radical, we need to recall Kostant’s cascade construction of pairwise strongly orthogonal roots ([4], [5], [14]).

Let us fix a Cartan subalgebra \(h \) of \(g \) and a Borel subalgebra \(b \) of \(g \) containing \(h \). Denote by \(R \), \(R^+ \) and \(\Pi = \{\alpha_1, \ldots, \alpha_t\} \) respectively the set of roots, positive roots and simple roots with respect to \(h \) and \(b \). For any \(\alpha \in R \), let \(g_\alpha \) be the root subspace associated to \(\alpha \). Choose \(X_\alpha \in g_\alpha \) such that \(\alpha([X_\alpha, X_-\alpha]) = 2 \). We shall write \(\alpha^\vee = [X_\alpha, X_-\alpha] \in h \), and for \(\lambda \in h^* \), \(\langle \lambda, \alpha^\vee \rangle = \lambda(\alpha^\vee) \). For \(S \subset \Pi \), we denote by \(R_S = R \cap ZS, R^+_S = R_S \cap R^+ \). If \(S \) is connected, then we shall denote by \(\varepsilon_S \) the highest root of \(R_S \).

Let \(S \subset \Pi \). We define inductively a set \(K(S) \) whose elements are subsets of \(\Pi \) as follows:

a) \(K(\emptyset) = \emptyset \).

b) If \(S_1, \ldots, S_r \) are the connected components of \(S \), then \(K(S) = K(S_1) \cup \cdots \cup K(S_r) \).

c) If \(S \) is connected, then \(K(S) = \{S\} \cup K(\bar{S}) \) where \(\bar{S} = \{\alpha \in S; \langle \alpha, \varepsilon_S \rangle = 0\} \).

It is well known that (see for example [14, Chapter 40]) elements of \(K(S) \) are connected subsets of \(S \). Moreover, if we denote by \(R(S) = \{\varepsilon_K; K \in K(S)\} \), then \(R(S) \) is a maximal set of pairwise strongly orthogonal roots in \(R_S \).

Let us also recall the following properties of \(K(S) \) which are easy consequences from the definition (see for example [14, Chapter 40]):

Lemma 1.1. Let \(S \) be a subset of \(\Pi \), \(K, K' \in K(S) \) and set

\[
\Gamma^K = \{\alpha \in R_K; \langle \alpha, \varepsilon^K \rangle > 0\}
\]

\[
= \{\alpha = \sum_{\beta \in K} n_\beta \beta \in R^K_+; n_\beta > 0 \text{ for some } \beta \in K \setminus \hat{K}\}
\]

i) We have either \(K \subset K' \) or \(K' \subset K \) or \(K \) and \(K' \) are connected components of \(K \cup K' \).

ii) \(\Gamma^K = R^K_+ \setminus \{\beta \in R^K_+; \langle \beta, \varepsilon^K \rangle = 0\} \). In particular, \(R^K_+ \) is the disjoint union of \(\Gamma^K \)'s, \(K \in K(S) \).
The subset E of $\Gamma(\Pi)$ is listed in Table 1 for an irreducible root system R, where for any $x \in \mathbb{Q}$, $[x]$ is a unique integer such that $[x] \leq x < [x] + 1$.

Examples 1.2. Let R be an irreducible root system. We shall use the numbering of simple roots in [14, Chapter 18]. Set $k = \sharp \mathcal{K}(\Pi)$.

1) Let R be of type A_{ℓ}. Then $\mathcal{K}(\Pi) = \bigcup_{i = 1}^{k} \{K_i\}$ where $K_i = \{\alpha_i, \ldots, \alpha_{\ell+1-i}\}$. For $1 \leq i \leq k$,

$$\Gamma_{K_i} = \{\alpha_i + \cdots + \alpha_{r}, \alpha_{r+1-i} + \cdots + \alpha_{\ell+1-i}; 0 \leq r \leq \ell - 2i\} \cup \{\varepsilon_{K_i}\}.$$

2) Let R be of type D_{2n+1}. Then $k = 2n$,

$$\mathcal{K}(\Pi) = \bigcup_{i = 1}^{n} \{K_i\} \cup \{L_i\},$$

where $K_i = \{\alpha_{2i-1}, \ldots, \alpha_{2n+1}\}$ and $L_i = \{\alpha_{2i-1}\}$. For $1 \leq i \leq n$,

$$\Gamma_{K_i} = \left\{ \sum_{j=2i-1}^{\ell} m_j \alpha_j; m_{2i} \neq 0 \right\}, \quad \Gamma_{L_i} = \{\alpha_{2i-1}\}.$$

3) Let R be of type E_6. Then

$$\mathcal{K}(\Pi) = \{\Pi\} \cup \{\{\alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}\} \cup \{\{\alpha_3, \alpha_4, \alpha_5\}\} \cup \{\{\alpha_4\}\}.$$

2. MAIN RESULT

Recall that for any subset $S \subset \Pi$,

$$p_S = \mathfrak{h} \oplus \bigoplus_{\alpha \in R_S \cup R^+} g_\alpha$$

is a (standard) parabolic subalgebra of g. Any parabolic subalgebra of g is conjugated to a standard parabolic subalgebra. The Lie subalgebra

$$u_S = \bigoplus_{\alpha \in R^+ \setminus R_S} g_\alpha$$

is the nilpotent radical of p_S.

For $S \subset \Pi$, denote by V_S the vector subspace of \mathfrak{h}^* spanned by the elements of $R(S)$ and $R(\Pi)$. Set

$$E_S = \{K \in \mathcal{K}(\Pi); X_{\varepsilon_K} \in u_S\} = \{K \in \mathcal{K}(\Pi); \varepsilon_K \notin R_S\}$$

and $Q_S = \left(\bigcup_{K \in E_S} \Gamma_K \right) \cap R^+_S$.

The subset E_S has the following simple characterisation.
Lemma 2.1. Let T_S be the union of the subsets $K \in \mathcal{K}(\Pi)$ verifying $K \subset S$. Then $E_S = \mathcal{K}(\Pi) \setminus \mathcal{K}(T_S)$.

Proof. This is straightforward. \hfill \square

Our main result is the following theorem.

Theorem 2.2. Let $S \subset \Pi$. Then

\[(3) \quad \chi(p_S) + \chi(u_S) = \text{rk} \mathfrak{g} + \sharp \mathcal{K}(S) - \sharp \mathcal{K}(T_S) + 2(\sharp \mathcal{K}(\Pi) - \dim V_S) + \sharp \mathcal{Q}_S.\]

We have $\chi(p_S) + \chi(u_S) \geq \text{rk} \mathfrak{g}$, and the equality holds if and only if the following conditions are satisfied:

i) $\sharp (\mathcal{K}(S) \cup \mathcal{K}(\Pi)) = \dim V_S$.

ii) For any connected component S' of S, we have either $S' \in \mathcal{K}(\Pi)$ or $\sharp (S' \setminus T_S) = 1$.

Proof. We may clearly assume that \mathfrak{g} is simple.

The formula for the sum $\chi(p_S) + \chi(u_S)$ is a direct consequence of the formula of the index of parabolic subalgebras conjectured in [13] and proved in [3, 6]:

\[(4) \quad \chi(p_S) = \text{rk} \mathfrak{g} + \sharp \mathcal{K}(\Pi) + \sharp \mathcal{K}(S) - 2 \dim V_S,\]

and the formula for the index of u_S (see for example [14, Chapter 40]), which, in view of Lemma 1.1, can be expressed in the following way:

\[(5) \quad \chi(u_S) = \sharp E_S + \sum_{K \in E_S} \sharp \Gamma^K - \dim u_S = \sharp E_S + \sharp \mathcal{Q}_S.\]

Observe that

\[(6) \quad \sharp \mathcal{K}(S) - \sharp \mathcal{K}(T_S) \geq 0.\]

1) Let S_1, \ldots, S_r be the connected components of S. For each i, there is a unique $K_i \in \mathcal{K}(\Pi)$ (see Lemma 1.1) such that $\varepsilon_{S_i} \in \Gamma^{K_i}$. If $K_i = S_i$, then S_i is a connected component of T_S. Otherwise $K_i \in E_S$, and we have

$\varepsilon_{S_i} \in \Gamma^{K_i} \cap \Gamma^{S_i} \subset \mathcal{Q}_S$.

2) It follows from Point 1) that $\mathcal{Q}_S = \emptyset$ if and only if $\mathcal{K}(S) \subset \mathcal{K}(\Pi)$ (or equivalently $S = T_S$).

3) Note that the connected components of T_S are the connected components of $T_S \cap S_i$. It follows again from Point 1) that

$$\sharp \mathcal{K}(S) - \sharp \mathcal{K}(T_S) = \sum_{i=1}^{r} (\sharp \mathcal{K}(S_i) - \sharp \mathcal{K}(T_S \cap S_i))$$

$$= \sum_{K_i \in E_S} (\sharp \mathcal{K}(S_i) - \sharp \mathcal{K}(T_S \cap S_i)).$$

4) From Table 1, we have $\dim V_S = \sharp \mathcal{K}(\Pi) = \text{rk} \mathfrak{g}$ in the cases where \mathfrak{g} is of type $B \ell, C \ell, D_{2n}, E_7, E_8, F_4$ and G_2. The inequality follows immediately from (3) and (6), and by Point 2) the equality holds if and only if $\mathcal{K}(S) \subset \mathcal{K}(\Pi)$.

On the other hand, since $\dim V_S = \sharp \mathcal{K}(\Pi)$ in these cases, condition i) is equivalent to $\mathcal{K}(S) \subset \mathcal{K}(\Pi)$. Finally, if condition i) is verified, then $S = T_S$, and condition ii) is automatically verified. So we have the result in these cases.

5) Type $A \ell$.\hfill \square
For any \(i \) verifying \(S_i \neq K_i \), by Point 1), Lemma 1.1 and Examples 1.2, half of \(\Gamma^S \setminus \{ \varepsilon_S \} \) belongs to \(Q_S \). Since \(\sharp(\Gamma^S) = 2\sharp(S) - 1 \) (Examples 1.2), such an \(S_i \) contributes \(\sharp(S_i) \) elements of \(Q_S \).

Again, since we are in type \(A_\ell \), \(K(\Pi) \) is totally ordered by inclusion. It follows that \(T_S \) is connected. Without loss of generality, we may assume that \(T_S \subset S_1 \).

Suppose that \(S_1 = T_S \). Then from the previous discussion, we deduce that

\[
\chi(p_S) + \chi(u_S) \geq \text{rk } g + \sharp(K(S \setminus S_1)) + 2(\sharp(K(\Pi)) - \dim V_S) + \sharp(S \setminus S_1).
\]

But our hypothesis implies that

\[
\dim V_S \leq \sharp(K(\Pi)) + \sharp(K(S \setminus S_1)) = \sharp(K(\Pi) \cup K(S)),
\]

so

\[
\chi(p_S) + \chi(u_S) \geq \text{rk } g + \sharp(S \setminus S_1) - \sharp(K(S \setminus S_1)).
\]

Hence \(\chi(p_S) + \chi(u_S) \geq \text{rk } g \). For the equality to hold, we must have the equality in (7) and

\[
\sharp(S \setminus S_1) = \sharp(K(S \setminus S_1)).
\]

This latter is only possible if \(\sharp(S_i) = 1 \) for \(i \geq 2 \), so we have conditions (i) and (ii). Conversely, suppose that conditions (i) and (ii) are verified; then \(\sharp(S_i) = 1 \) for \(i \geq 2 \). Consequently \(Q_S = S \setminus S_1 \) by Point 1) and the definition of \(Q_S \).

Suppose that \(S_1 \supseteq T_S \) (this includes the case \(T_S = \emptyset \)). Then \(K(S) \cap K(\Pi) = \emptyset \). Thus

\[
\dim V_S \leq \sharp(K(\Pi)) + \sharp(K(S)) = \sharp(K(\Pi) \cup K(S)).
\]

We deduce from Point 1) and the remark in the first paragraph of Point 5) that

\[
\chi(p_S) + \chi(u_S) \geq \text{rk } g + \sharp(K(S)) - \sharp(K(T_S)) + 2(\sharp(K(\Pi)) - \dim V_S) + \sharp(S) \geq \text{rk } g + \sharp(S) - \sharp(K(S)) - \sharp(K(T_S)).
\]

Hence

\[
\chi(p_S) + \chi(u_S) \geq \text{rk } g + \sum_{i=1}^{r} \left(\sharp(S_i) - \left\lfloor \frac{\sharp(S_i) + 1}{2} \right\rfloor \right) - \left\lfloor \frac{\sharp(T_S) + 1}{2} \right\rfloor.
\]

Since \(T_S \subset S_1 \), we deduce from Table 1 that

\[
\sharp(S_1) - \left\lfloor \frac{\sharp(S_1) + 1}{2} \right\rfloor - \left\lfloor \frac{\sharp(T_S) + 1}{2} \right\rfloor \geq 0.
\]

So we have our inequality \(\chi(p_S) + \chi(u_S) \geq \text{rk } g \).

Now for the equality \(\chi(p_S) + \chi(u_S) = \text{rk } g \) to hold, we must have the equality in (8) and \(\sharp Q_S = \sharp(S) \),

\[
\sharp(S_1) - \left\lfloor \frac{\sharp(S_1) + 1}{2} \right\rfloor - \left\lfloor \frac{\sharp(T_S) + 1}{2} \right\rfloor = 0 \text{ and } \sharp(S_i) - \left\lfloor \frac{\sharp(S_i) + 1}{2} \right\rfloor = 0
\]

for \(i \geq 2 \). This implies that \(\sharp(S_1) = \sharp(T_S) + 1 \), and \(\sharp(S_i) = 1 \) for \(i \geq 2 \). So we have conditions (i) and (ii). Conversely, if conditions (i) and (ii) are verified, then \(\sharp(S_i) = 1 \) for \(i \geq 2 \), and \(\sharp(S_1) = \sharp(T_S) + 1 \). In view of the above, to show that \(\chi(p_S) + \chi(u_S) = \text{rk } g \), it suffices to check that \(\sharp(Q_S \cap R^+_{S_1}) = \sharp(S_1) \), which is a straightforward verification.

6) Type \(D_{2n+1} \).

In this case, \(\sharp K(\Pi) = \text{rk } g - 1 \). Let us use the numbering of simple roots in [14, Chapter 18]. We check easily that \(\alpha_1, \ldots, \alpha_{\ell-2} \in V_{\Pi} \).
Table 2

<table>
<thead>
<tr>
<th>S_1</th>
<th>$\dim V_{S_1}$</th>
<th>$T_S \cap S_1$</th>
<th>$\sharp \mathcal{K}(S_1)$</th>
<th>$\sharp \mathcal{K}(T_S \cap S_1)$</th>
<th>K_1</th>
<th>$\sharp(\Gamma^{K_1} \cap \Gamma^{S_1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>5</td>
<td>\emptyset</td>
<td>1</td>
<td>0</td>
<td>A_3 or A_5</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>5</td>
<td>\emptyset</td>
<td>1</td>
<td>0</td>
<td>A_5</td>
<td>2</td>
</tr>
<tr>
<td>A_3</td>
<td>6</td>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>A_3</td>
<td>2</td>
</tr>
<tr>
<td>A_4</td>
<td>5</td>
<td>A_1</td>
<td>2</td>
<td>1</td>
<td>A_5</td>
<td>3</td>
</tr>
<tr>
<td>A_5</td>
<td>6</td>
<td>A_1</td>
<td>2</td>
<td>1</td>
<td>E_6</td>
<td>3</td>
</tr>
<tr>
<td>A_6</td>
<td>5</td>
<td>A_3</td>
<td>4</td>
<td>2</td>
<td>E_6</td>
<td>4</td>
</tr>
<tr>
<td>D_4</td>
<td>5</td>
<td>A_3</td>
<td>4</td>
<td>2</td>
<td>E_6</td>
<td>4</td>
</tr>
<tr>
<td>D_5</td>
<td>6</td>
<td>A_3</td>
<td>4</td>
<td>2</td>
<td>E_6</td>
<td>9</td>
</tr>
</tbody>
</table>

If $\dim V_S = \sharp \mathcal{K}(\Pi)$, then the inequality follows from (3) and (6), and the condition for equality follows from Point 2).

Suppose now that $\dim V_S = \text{rk } g$ and $\alpha_{\ell-1} \in S$ (the case $\alpha_\ell \in S$ being analogous). Then

$$\chi(p_S) + \chi(u_S) = \text{rk } g + \sharp \mathcal{K}(S) - \sharp \mathcal{K}(T_S) - 2 + \sharp(Q_S),$$

and the connected component S_1 of S containing $\alpha_{\ell-1}$ is not in $\mathcal{K}(\Pi)$; otherwise, we would have $\dim V_S = \sharp \mathcal{K}(\Pi)$.

By Point 1), $e_{S_1} \in Q_S$. By examining the possibilities for S_1 and K_1 (Examples 1.2), we verify that

$$\sharp \mathcal{K}(S_1) - \sharp \mathcal{K}(T_S \cap S_1) + \sharp(\Gamma^{K_1} \cap \Gamma^{S_1}) \geq 2$$

with equality if and only if S_1 is of type A_1 or A_2. Therefore, we have obtained the inequality.

In fact, we showed in the previous paragraph that already we have

$$\text{rk } g + \sharp \mathcal{K}(S_1) - \sharp \mathcal{K}(T_S \cap S_1) - 2 + \sharp(\Gamma^{K_1} \cap \Gamma^{S_1}) \geq \text{rk } g.$$

So if $\chi(p_S) + \chi(u_S) = \text{rk } g$, then from (9) and the above inequality, we must have $\mathcal{K}(S \setminus S_1) \subset \mathcal{K}(\Pi)$, and also the equality in (10). Hence conditions (i) and (ii). Conversely, suppose that conditions (i) and (ii) are verified; then the fact that $\alpha_1, \ldots, \alpha_{\ell-2} \in V_\Pi$ implies that $\mathcal{K}(S \setminus S_1) \subset \mathcal{K}(\Pi)$ and $\sharp \mathcal{K}(S_1) = 1$. Hence S_1 is of type A_1, A_2. It is then easy to check that $\chi(p_S) + \chi(u_S) = \text{rk } g$.

7) Type E_6.

Here, we have $\sharp \mathcal{K}(\Pi) = 4$ and $\alpha_2, \alpha_4 \in V_\Pi$. Let S_1 be a connected component of S such that $\dim V_{S_1} > 4$. Under these conditions, the possibilities are shown in Table 2. Thus,

$$\sharp \mathcal{K}(S_1) - \sharp \mathcal{K}(T_S \cap S_1) + \sharp(\Gamma^{S_1} \cap \Gamma^{K_1}) \geq 2(\dim V_S - \sharp \mathcal{K}(\Pi)).$$

A direct verification gives the result. Note that as in the case of type A_ℓ, $\mathcal{K}(\Pi)$ is totally ordered by inclusion, so T_S is connected.

Remark 2.3. Theorem 2.2 says that if $\mathcal{K}(S) \subset \mathcal{K}(\Pi)$ or, equivalently, $S' \in \mathcal{K}(\Pi)$ for any connected component S' of S, then $\chi(p_S) + \chi(u_S) = \text{rk } g$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Example 2.4. Let us consider the case of minimal parabolic subalgebras. So $S = \{\alpha\}$ and it follows that

$$\chi(p) + \chi(u) = \begin{cases}
\text{rk} \, g & \text{if } \{\alpha\} \in K(\Pi), \\
\text{rk} \, g & \text{if } \{\alpha\} \not\subset K(\Pi) \text{ and } \dim V_S = \sharp K(\Pi) + 1, \\
\text{rk} \, g + 2 & \text{if } \{\alpha\} \not\subset K(\Pi) \text{ and } \dim V_S = \sharp K(\Pi).
\end{cases}$$

Thus the minimal parabolic subalgebras p_S verifying $\chi(p_S) + \chi(u_S) = \text{rk} \, g$ are (in the simple roots numbering of [14, Chapter 18]) as shown in Table 3.

Example 2.5. In the other extreme, it is easy to check that maximal parabolic subalgebras of $g = \mathfrak{sl}_{\ell+1}$ verifying $\chi(p) + \chi(u) = \text{rk} \, g$ are exactly the ones associated to simple roots at the extremities of the Dynkin diagram.

Acknowledgment

The author would like to thank the anonymous referee for his or her remarks.

References

UMR 6086 du C.N.R.S., DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE POITIERS, TÉLÉPORT 2 – BP 30179, BOULEVARD MARIE ET PIERRE CURIE, 86962 FUTUROSCOPE CHASSENEUIL CEDEX, FRANCE

E-mail address: yuyu@math.univ-poitiers.fr