Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A counterexample for boundedness of pseudo-differential operators on modulation spaces


Authors: Mitsuru Sugimoto and Naohito Tomita
Journal: Proc. Amer. Math. Soc. 136 (2008), 1681-1690
MSC (2000): Primary 42B35, 47G30
DOI: https://doi.org/10.1090/S0002-9939-08-09253-8
Published electronically: January 17, 2008
MathSciNet review: 2373597
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that pseudo-differential operators with symbols in the class $ S_{1,\delta}^0$ ( $ 0<\delta<1$) are not always bounded on the modulation space $ M^{p,q}$ ($ q\neq2$).


References [Enhancements On Off] (What's this?)

  • 1. A.P. Calderón and R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187. MR 0298480 (45:7532)
  • 2. H.G. Feichtinger, Banach spaces of distributions of Wiener's type and interpolation, in: P. Butzer, B. Sz.-Nagy and E. Görlich (Eds.), Proc. Conf. Oberwolfach, Functional Analysis and Approximation, August 1980, Int. Ser. Num. Math., Vol. 60, Birkhäuser-Verlag, Basel, Boston, Stuttgart, 1981, pp. 153-165. MR 650272 (83g:43005)
  • 3. H.G. Feichtinger, Modulation spaces on locally compact abelian groups, in: M. Krishna, R. Radha and S. Thangavelu (Eds.), Wavelets and Applications, Chennai, India, Allied Publishers, New Delhi, 2003, pp. 99-140, Updated version of a technical report, University of Vienna, 1983.
  • 4. H.G. Feichtinger, Modulation spaces: Looking back and ahead, Sampl. Theory Signal Image Process. 5 (2006), 109-140. MR 2233968 (2007j:43003)
  • 5. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001. MR 1843717 (2002h:42001)
  • 6. K. Gröchenig, Time-Frequency analysis of Sjöstrand's class, Rev. Mat. Iberoamericana 22 (2006), 703-724. MR 2294795
  • 7. K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34 (1999), 439-457. MR 1702232 (2001a:47051)
  • 8. H. Kumano-go, Pseudo-Differential Operators, MIT Press, Cambridge, 1981.
  • 9. J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), 185-192. MR 1266757 (95b:47065)
  • 10. K. Tachizawa, The boundedness of pseudodifferential operators on modulation spaces, Math. Nachr. 168 (1994), 263-277. MR 1282643 (95h:42038)
  • 11. J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I, J. Funct. Anal. 207 (2004), 399-429. MR 2032995 (2004j:35312)
  • 12. H. Triebel, Modulation spaces on the Euclidean $ n$-space, Z. Anal. Anwendungen 2 (1983), 443-457. MR 725159 (85i:46040)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B35, 47G30

Retrieve articles in all journals with MSC (2000): 42B35, 47G30


Additional Information

Mitsuru Sugimoto
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email: sugimoto@math.sci.osaka-u.ac.jp

Naohito Tomita
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email: tomita@gaia.math.wani.osaka-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-08-09253-8
Keywords: Modulation spaces, pseudo-differential operators
Received by editor(s): January 4, 2007
Published electronically: January 17, 2008
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society