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ON THE CONVERGENCE IN CAPACITY
ON COMPACT KAHLER MANIFOLDS

AND ITS APPLICATIONS

PHAM HOANG HIEP

(Communicated by Mei-Chi Shaw)

Abstract. The main aim of the present note is to study the convergence in
CX,ω on a compact Kahler mainfold X. The obtained results are used to study
global extremal functions and describe the ω-pluripolar hull of an ω-pluripolar
subset in X.

Introduction

The convergence in the capacity Cn on domains in Cn introduced by Bedford
and Taylor (see [BT2]) was investigated by Xing and Cegrell (see [Xi1], [Xi2], [Ce3]).
Recently Ko�lodziej (see [Ko2]) introduced the capacity CX,ω on a compact Kahler
manifold X. Next Guedj and Zeriahi studied it in [GZ]. They proved that CX,ω

is locally equivalent to Cn. The main aim of the present note is to study the
convergence in CX,ω on X. The obtained results are used to study global extremal
functions and describe the ω-pluripolar hull of an ω-pluripolar subset in X. In
section 2, we introduce a characterization of the convergence in CX,ω of a sequence
of ω-plurisubharmonic functions on X. Next we prove under some conditions that
the convergence in CX,ω on X implies the one in CS,ω|S where S is a smooth
hypersurface in X. By applying this result, in section 3 we prove that if E is an
ω-pluripolar set in X\S where S is a smooth hypersurface in X, then E∗

X ∩ S is
also ωS-pluripolar in S, where E∗

X denotes the pluripolar hull of E.
For the general definition of the complex Monge-Ampère operator we refer the

reader to the papers [BT1], [BT2], [Ce1], [Ce2].

1. Preliminaries

1.1. Let X be a compact Kahler manifold with a fundamental form ω = ωX with∫
X

ωn = 1. An upper semicontinuous function ϕ : X → [−∞, +∞) is called ω-
plurisubharmonic (ω-psh) if ω + ddcϕ ≥ 0. By PSH(X, ω) (resp PSH−(X, ω)) we
denote the set of ω-psh (resp. negative ω-psh) functions on X.
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1.2. In [Ko2], Ko�lodziej introduced the capacity CX,ω on X by

CX(E) = CX,ω(E) = sup{
∫

E

ωn
ϕ : ϕ ∈ PSH(X, ω), −1 ≤ ϕ ≤ 0}

where ωn
ϕ = (ω + ddcϕ)n and n = dimX.

In [GZ], Guedj and Zeriahi proved that CX is a Choquet capacity on X and

CX(E) =
∫

X

(−h∗
E,ω)ωn

h∗
E,ω

where h∗
E,ω denotes the upper semicontinuous regularization of hE,ω given by

hE,ω(z) = sup{ϕ(z) : ϕ ∈ PSH−(X, ω), ϕ|E ≤ −1}.

1.3. Let uj , u ∈ PSH(X, ω). We say that {uj} converges to u in CX if

CX({|uj − u| > δ}) → 0

as j → ∞, for all δ > 0.

1.4. Let S be a smooth hypersurface in X. For each z ∈ S we find a neighbourhood
U of z and a strictly psh function ϕ on U such that ω = ddcϕ. Define ω|S = ddcϕ
on U ∩ S. Then ωS is a fundamental form on S. Obviously if u ∈ PSH(X, ω), then
u|S ∈ PSH(S, ωS).

1.5. Let E ⊂ X. We say that E is ω-pluripolar if there exists ϕ ∈ PSH(X, ω),
ϕ �≡ −∞ such that E ⊂ {ϕ = −∞}. In [GZ] the authors proved that E is ω-
pluripolar if and only if E is locally pluripolar. Define

E∗
X =

⋂
{u = −∞ : u ∈ PSH(X, ω), u = −∞ on E}.

The set E∗
X is called the ω-pluripolar hull of E in X.

2. A characterization of convergence in CX

In this section we prove the following.

2.1. Theorem. Let uj , u ∈ PSH(X, ω) be uniformly bounded. Then the following
two are equivalent:

i) uj → u in CX ;
ii) limj→∞ uj ≤ u and limj→∞

∫
X

(uj − u)ωn
uj

= 0.

Proof. Set
M = max(1, sup

j≥1
||uj ||L∞(X), ||u||L∞(X)) < +∞.

i) ⇒ ii). Given δ > 0, we have

|
∫

X

(uj − u)ωn
uj
| = |

∫

{|uj−u|<δ}

(uj − u)ωn
uj

+
∫

{|uj−u|≥δ}

(uj − u)ωn
uj
|

≤ δ

∫

X

ωn
uj

+ 2M

∫

{|uj−u|≥δ}

ωn
uj

≤ δ + (2M)n+1CX({|uj − u| ≥ δ}).
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It follows that

lim
j→∞

|
∫

X

(uj − u)ωn
uj
| ≤ δ.

Therefore

lim
j→∞

|
∫

X

(uj − u)ωn
uj
| = 0.

Since uj → u in CX , it is easy to check that limj→∞ uj ≤ u. �

ii) ⇒ i) In order to prove ii) ⇒ i) we need two lemmas.

2.2. Lemma. Let u, v ∈ PSH ∩ L∞(X, ω) be bounded. Then

|
∫

X

d(u − v) ∧ dc(u − v) ∧ ωϕ1 ∧ ... ∧ ωϕn−1 | ≤ C(
∫

X

(v − u)(ωn
u − ωn

v ))2
1−n

∀ ϕ1, ..., ϕn−1 ∈ PSH(X, ω), −1 ≤ ϕ1, ..., ϕn−1 ≤ 0, where C is a positive constant
depending only on n and ||u||L∞(X)||v||L∞(X).

Proof. As in [Bl] we set

f = u − v,

a =
∫

X

(v − u)(ωn
u − ωn

v )

=
∫

X

(v − u)ddc(u − v) ∧ (
n−1∑
j=0

ωj
u ∧ ωn−1−j

v )

=
∫

X

df ∧ dcf ∧ T,

where

T =
n−1∑
j=0

ωj
u ∧ ωn−1−j

v .

For each k = 0, ..., n − 1 we will prove inductively that

(1)
∫

X

df ∧ dcf ∧ ωi
u ∧ ωj

v ∧ ωϕ1 ∧ ... ∧ ωϕk
≤ Ca2−k

∀ i, j : i + j + k = n − 1.
If k = 0, then ∫

X

df ∧ dcf ∧ ωi
u ∧ ωj

v ≤
∫

X

df ∧ dcf ∧ T = a.

Assume that (1) holds for k − 1. We prove by induction on t that

(2)
∫

X

df ∧ dcf ∧ ωi
u ∧ ωj

v ∧ ωϕ1 ∧ ... ∧ ωϕt
∧ ωk−t ≤ Ca2−k

.

For t = 0, (2) holds by Theorem 2 in [Bl]. Set

S = ωϕ1 ∧ ... ∧ ωϕt−1 ∧ ωk−t.
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We have∫

X

df ∧ dcf ∧ ωi
u ∧ ωj

v ∧ ωϕt
∧ S

=
∫

X

df ∧ dcf ∧ ωi
u ∧ ωj

v ∧ ω ∧ S +
∫

X

df ∧ dcf ∧ ωi
u ∧ ωj

v ∧ ddcϕt ∧ S.

Since (2) holds for t − 1, we only prove that

|
∫

X

df ∧ dcf ∧ ωi
u ∧ ωj

v ∧ ddcϕt ∧ S| ≤ Ca2−k

.

Indeed, by integration by parts we have

|
∫

X

df ∧ dcf ∧ ωi
u ∧ ωj

v ∧ ddcϕt ∧ S|

= |
∫

X

dcϕt ∧ df ∧ ddcf ∧ ωi
u ∧ ωj

v ∧ S|

= |
∫

X

df ∧ dcϕt ∧ ddcf ∧ ωi
u ∧ ωj

v ∧ S|

≤ |
∫

X

df ∧ dcϕt ∧ ωu ∧ ωi
u ∧ ωj

v ∧ S| + |
∫

X

df ∧ dcϕt ∧ ωv ∧ ωi
u ∧ ωj

v ∧ S|

= |
∫

X

df ∧ dcϕt ∧ ωi+1
u ∧ ωj

v ∧ S| + |
∫

X

df ∧ dcϕt ∧ ωi
u ∧ ωj+1

v ∧ S|.

By the Schwarz inequality it follows that

|
∫

X

df ∧ dcϕt ∧ ωi+1
u ∧ ωj

v ∧ S|2

≤
∫

X

df ∧ dcf ∧ ωi+1
u ∧ ωj

v ∧ S

∫

X

dϕt ∧ dcϕt ∧ ωi+1
u ∧ ωj

v ∧ S

=
∫

X

df ∧ dcf ∧ ωi+1
u ∧ ωj

v ∧ S

∫

X

−ϕtddcϕt ∧ ωi+1
u ∧ ωj

v ∧ S

≤
∫

X

df ∧ dcf ∧ ωi+1
u ∧ ωj

v ∧ S

∫

X

−ϕtωϕt
∧ ωi+1

u ∧ ωj
v ∧ S

≤
∫

X

df ∧ dcf ∧ ωi+1
u ∧ ωj

v ∧ S

∫

X

ωϕt
∧ ωi+1

u ∧ ωj
v ∧ S

=
∫

X

df ∧ dcf ∧ ωi+1
u ∧ ωj

v ∧ S

≤ Ca21−k

(because (1) holds for k − 1).
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Therefore
|
∫

X

df ∧ dcϕt ∧ ωi+1
u ∧ ωj

v ∧ S| ≤ Ca2−k

.

Similarly

|
∫

X

df ∧ dcϕt ∧ ωi
u ∧ ωj+1

v ∧ S| ≤ Ca2−k

. �

2.3. Lemma. Let uj , u ∈ PSH(X, ω) be uniformly bounded. Then the following
are equivalent:

i) uj → u in CX ,
ii) limj→∞ uj ≤ u and lim

j→∞

∫
X

(ũj − uj)ωn
uj

= 0,

where ũj = max(uj , u).

Proof. i) ⇒ ii). This is the same as in i) ⇒ ii) of Theorem 2.1.
ii) ⇒ i). Since ũj → u and ũj = max(uj , u), it is easy to see that ũj → u in CX .

Thus to prove uj → u in CX , it suffices to show that ũj − uj → 0 in CX . Indeed,
for every δ > 0 we have

CX({ũj − uj > δ}) = sup{
∫

{ũj−uj>δ}

ωn
ϕ : ϕ ∈ PSH(X, ω), −1 ≤ ϕ ≤ 0}

≤ 1
δ

sup{
∫

X

(ũj − uj)ωn
ϕ : ϕ ∈ PSH(X, ω), −1 ≤ ϕ ≤ 0}.

In order to prove the lemma we prove by induction on k = 0, ..., n that

(1) sup{
∫

X

(ũj − uj)ωk
ϕ ∧ ωn−k : ϕ ∈ PSH(X, ω), −1 ≤ ϕ ≤ 0} → 0

as j → ∞.
We show that (1) holds for k = 0. We assume conversely that

sup{
∫

X

(ũj − uj) ∧ ωn : ϕ ∈ PSH(X, ω), −1 ≤ ϕ ≤ 0} �→ 0

as j → ∞. We may assume that

(2)
∫

X

(ũj − uj)ωn ≥ ε0, ∀ j ≥ 1

for some ε0 > 0. By [Ho], we also may assume that uj → v ∈ PSH(X, ω) as
j → ∞ in L1(X) with v ≤ u. Since ũj − uj → u − v weakly, it follows that
D(ũj − uj) → D(u − v) weakly as j → ∞ where Du = ( ∂u

∂z1
, ..., ∂u

∂zn
, ∂u

∂z̄1
, ..., ∂u

∂z̄n
).

From Lemma 2.2 we have∫

X

|D(ũj − uj)|2ωn = |
∫

X

d(ũj − uj) ∧ dc(ũj − uj)ωn−1|

≤ C(
∫

X

(ũj − uj)(ωn
uj

− ωn
ũj

))2
1−n

≤ C(
∫

X

(ũj − uj)ωn
uj

)2
1−n

→ 0
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as j → ∞. Combining this with the weak convergence of D(ũj − uj) to D(u − v)
we have D(u − v) = 0. Hence u − v = c ≥ 0 a.e in X. Since u and v are ω-psh, we
have u − v = c on X. We show that c = 0. Indeed, we have

∫

X

(ũj − uj)ωn
uj

≥
∫

X

(u − uj)ωn
uj

= c

∫

X

ωn +
∫

X

(v − uj)ωn
uj

= c +
∫

X

(v − uj)ωn
uj

.

Given ε > 0, by [BT2] we find an open subset G of X with CX(G) < ε and j0 such
that

uj(z) ≤ v(z) + ε, ∀ j ≥ j0, z ∈ X\G.

It follows that
∫

X

(v − uj)ωn
uj

≥ −Mn+1CX(G) − ε

∫

X

ωn
uj

≥ −Mn+1ε − ε

for j ≥ j0. Letting j → ∞ and ε → 0 we obtain

lim
j→∞

∫

X

(v − uj)ωn
uj

≥ 0.

There from ii) we have

0 = lim
j→∞

∫

X

(ũj − uj)ωn
uj

≥ c ≥ 0.

Thus c = 0 and u = v. This means that ũj and uj → u in L1(X), which contradicts
(2).

Assume that (1) holds for k− 1. For each ϕ ∈ PSH(X, ω), −1 ≤ ϕ ≤ 0, we have
∫

X

(ũj − uj)ωk
ϕ ∧ ωn−k =

∫

X

(ũj − uj)ωk−1
ϕ ∧ ωn−k+1

+
∫

X

(ũj − uj)ddcϕ ∧ ωk−1
ϕ ∧ ωn−k

=
∫

X

(ũj − uj)ωk−1
ϕ ∧ ωn−k+1

−
∫

X

d(ũj − uj) ∧ dcϕ ∧ ωk−1
ϕ ∧ ωn−k.
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By the induction hypothesis it remains to prove that

sup{|
∫

X

d(ũj − uj) ∧ dcϕ ∧ ωk−1
ϕ ∧ ωn−k| : ϕ ∈ PSH(X, ω), −1 ≤ ϕ ≤ 0} → 0

as j → ∞. Indeed, by the Schwarz inequality, we have

|
∫

X

d(ũj − uj) ∧ dcϕ ∧ ωk−1
ϕ ∧ ωn−k|2

≤
∫

X

dϕ ∧ dcϕ ∧ ωk−1
ϕ ∧ ωn−k

∫

X

d(ũj − uj) ∧ dc(ũj − uj) ∧ ωk−1
ϕ ∧ ωn−k

=
∫

X

−ϕddcϕ ∧ ωk−1
ϕ ∧ ωn−k

∫

X

d(ũj − uj) ∧ dc(ũj − uj) ∧ ωk−1
ϕ ∧ ωn−k

≤
∫

X

−ϕωk
ϕ ∧ ωn−k

∫

X

d(ũj − uj) ∧ dc(ũj − uj) ∧ ωk−1
ϕ ∧ ωn−k

≤
∫

X

ωk
ϕ ∧ ωn−k

∫

X

d(ũj − uj) ∧ dc(ũj − uj) ∧ ωk−1
ϕ ∧ ωn−k

=
∫

X

d(ũj − uj) ∧ dc(ũj − uj) ∧ ωk−1
ϕ ∧ ωn−k

(by Lemma 2.2)

≤ C(
∫

X

(ũj − uj)(ωn
uj

− ωn
ũj

))2
1−n

≤ C(
∫

X

(ũj − uj)ωn
uj

)2
1−n

→ 0

as j → ∞.

Now we can complete the proof of ii) ⇒ i) in Theorem 2.1. By Lemma 2.3 it
remains to show that

lim
j→∞

∫

X

(ũj − uj)ωn
uj

= 0.

The equality follows from the hypothesis ii) and the convergence of ũj to u in
CX . �

2.4. Theorem. Let X be a compact Kahler manifold and S a smooth hypersurface
in X. Let uj , u ∈ PSH(X, ω) be uniformly bounded such that uj → u in CX and
supp ωn

uj
⊂ K � X\S for j ≥ 1. Then uj |S → u|S in CS as j → ∞.

Proof. Let {Ui}i=1,...,m be an open cover of X satisfying
i) For each i = 1, ..., m, there exists a holomorphic function fi on a neighbourhood

of Ūi such that S ∩ Ui = {fi = 0}, f ′
i(z) �= 0 for z ∈ Ūi and ||fi||L∞(Ui) ≤ 1.

ii) For each i = 1, ..., m either Ui ∩ K = ∅ or Ui ∩ S = ∅.
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Let {ϕi}i=1,...,m be a C∞-partition of unity associated with {Ui}i=1,...,m. Set
ψi = log |fi|, ∀ i = 1, ..., m and ũj = max(uj , u), ∀ j ≥ 1. Since uj → u in CX ,
we have limj→∞ uj ≤ u in X and hence limj→∞ uj ≤ u in S. By Lemma 2.3 it
remains to show that

lim
j→∞

∫

S

(ũj − uj)ωn−1
uj |S ≤ 0.

Indeed, we have by Corollary 4.2 in [BT3],

∫

S

(ũj − uj)ωn−1
uj |S

=
m∑

i=1

∫

S

ϕi(ũj − uj)ωn−1
uj |S

=
m∑

i=1

∫

S∩Ui

ϕi(ũj − uj)ωn−1
uj |S

=
1
2π

m∑
i=1

∫

Ui

ϕi(ũj − uj)ddcψi ∧ ωn−1
uj

=
1
2π

m∑
i=1

∫

X

ϕi(ũj − uj)ddcψi ∧ ωn−1
uj

= − 1
2π

m∑
i=1

∫

X

(ũj − uj)dϕi ∧ dcψi ∧ ωn−1
uj

− 1
2π

m∑
i=1

∫

X

ϕid(ũj − uj) ∧ dcψi ∧ ωn−1
uj

= − 1
2π

m∑
i=1

∫

X

(ũj − uj)dϕi ∧ dcψi ∧ ωn−1
uj

+
1
2π

m∑
i=1

∫

X

ϕidψi ∧ dc(uj − ũj) ∧ ωn−1
uj

= − 1
2π

m∑
i=1

∫

X

(ũj − uj)dϕi ∧ dcψi ∧ ωn−1
uj

− 1
2π

m∑
i=1

∫

X

ψidϕi ∧ dc(uj − ũj) ∧ ωn−1
uj

− 1
2π

m∑
i=1

∫

X

ϕiψiddc(uj − ũj) ∧ ωn−1
uj

= Aj + Bj + Cj .



CONVERGENCE IN CAPACITY ON COMPACT KAHLER MANIFOLDS 2015

For Cj we have

Cj = − 1
2π

m∑
i=1

∫

X

ϕiψiddc(uj − ũj) ∧ ωn−1
uj

= − 1
2π

m∑
i=1

∫

X

ϕiψi(ωuj
− ωũj

) ∧ ωn−1
uj

≤ − 1
2π

m∑
i=1

∫

X

ϕiψiω
n
uj

= 0

(because supp ωn
uj

⊂ K for j ≥ 1 and either Ui ∩ K = ∅ or Ui ∩ S = ∅ for
i = 1, ..., m). Next write

Bj = − 1
2π

m∑
i=1

∫

X

ψidϕi ∧ dc(uj − ũj) ∧ ωn−1
uj

= − 1
2π

m∑
i=1

∫

X

ψid(uj − ũj) ∧ dcϕi ∧ ωn−1
uj

= − 1
2π

∫

X

d(uj − ũj) ∧ (
m∑

i=1

ψid
cϕi) ∧ ωn−1

uj
.

Obviously g =
∑m

i=1 ψid
cϕi is smooth. Indeed, let z ∈ X. We can assume that

{i = 1, ..., m : z ∈ Ui} = {1, ..., k}. Take a neighbourhood V of z such that V ⊂ Ui

for i = 1, ..., k and V ∩ suppϕi = ∅ for i = k + 1, ..., m. On V we have
m∑

i=1

ψid
cϕi =

m∑
i=2

(ψi − ψ1)dcϕi

=
k∑

i=2

(ψi − ψ1)dcϕi

=
k∑

i=2

(log
|fi|
|f1|

)dcϕi.

Therefore g is smooth. Thus for Bj we have

|Bj | = |
∫

X

d(uj − ũj) ∧ g ∧ ωn−1
uj

|

= |
∫

X

(ũj − uj)dg ∧ ωn−1
uj

| ≤ C

∫

X

(ũj − uj)ω ∧ ωn−1
uj

,

where C is a positive constant independent on g. Since ũj and uj → u in CX , it
follows that Bj → 0 as j → ∞.

Similarly as above, h =
∑m

i=1 dϕi ∧ dcψi is smooth. Thus we can find C > 0
such that

|Aj | ≤ C

∫

X

(ũj − uj)ω ∧ ωn−1
uj

→ 0

as j → ∞. �
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From Theorem 2.4 we obtain the following.

2.5. Corollary. Let X and S be as in Theorem 2.4 and uj , u ∈ PSH(X, ω) such
that uj increases to u a.e. on X and supp ωn

uj
⊂ K � X\S for j ≥ 1. Then uj |S

increases to u|S a.e. on S.

Remark. Corollary 2.5 was proved by Bedford and Taylor in [BT3] for X = CPn.

3. Some applications

In this section we apply the results obtained in Section 2 to investigate global
extremal functions and ω-plurisubharmonic hulls of ω-pluripolar sets in a compact
Kahler manifold X.

Given E a subset of X and Q a function on E, define

VE,Q = sup{ϕ ∈ PSH(X, ω) : ϕ ≤ Q on E}.
VE,Q is called the global extremal function of E with the weight Q. We write
VE = VE,0.

3.1. Theorem. Let X be a compact Kahler manifold and S a smooth hypersurface
in X. Let K be a compact set in X\S and Q be a lower semicontinuous function
on K. Then

(VK,Q|S)∗ = V ∗
K,Q|S .

We need the following.

3.2. Lemma. Let K be a compact set in X and {Qj} be a sequence of lower
semicontinuous functions on K increasing to Q. Then {VK,Qj

} increases to VK,Q.

Proof. Let ϕ ∈ PSH(X, ω), ϕ ≤ Q on K. Since ϕ − Qj ↘ ϕ − Q ≤ 0 on K, by
Dini’s theorem for every ε > 0 there exists j0 such that ϕ−Qj ≤ ε on K for j ≥ j0.
This implies that ϕ − ε ≤ VK,Qj

for j ≥ j0. It follows that VK,Q ≤ limj→∞ VK,Qj
.

Therefore limj→∞ VK,Qj
= VK,Q because obviously limj→∞ VK,Qj

≤ VK,Q.
Now we continue the proof of Theorem 3.1. Take a compact ε-neighbourhood

E of K with E ⊂ X\S and a sequence Qj of continuous function on E such that
Qj ↗ Q, where we define Q = +∞ on E\K. As in [Si], VE,Qj

is ω-psh continuous
and moreover suppωn

VE,Qj
⊂ E � X\S for j ≥ 1. By Lemma 3.2, VE,Qj

increases
to V ∗

E,Q a.e. on X. Corollary 2.5 implies that VE,Qj
increases to V ∗

E,Q a.e. on S.
Therefore we have

VE,Q = lim
j→∞

VE,Qj
= V ∗

E,Q

a.e. on S. It follows that
(VE,Q|S)∗ ≥ V ∗

E,Q|S
a.e. on S. Since both functions are ωS-psh on S we have

(VE,Q|S)∗ ≥ V ∗
E,Q|S .

Therefore
(VE,Q|S)∗ = V ∗

E,Q|S
because obviously

(VE,Q|S)∗ ≤ V ∗
E,Q|S .

Let L(Cn) be the family of plurisubharmonic functions on Cn that satisfy

ϕ(z) ≤ 1
2

log(1 + |z|2) + Cϕ, z ∈ Cn.
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We consider a 1-to-1 correspondence between PSH(CPn, ωCP n) and the homoge-
neous Lelong class

H(Cn+1) = {ϕ ∈ L(Cn+1) : ϕ(tz) = ϕ(z) + log |t|, z ∈ Cn+1, t ∈ C},

which is given by the natural mapping

ϕ ∈ H(Cn+1) → ϕ̃(z) = ϕ(z) − log |z|, z ∈ Cn+1.

From the 1-to-1 mapping and Theorem 3.1 we generalize Theorem 1.1 in [Ko1]. �

3.3. Corollary. Let K be a compact subset in Cn and Q be a lower semicontinuous
function on K. Then

lim
(t,ξ)→(0,z)

ψ1×K,Q(t, ξ) = lim
ξ→z

ψ1×K,Q(0, ξ), z ∈ Cn

where

ψ1×K,Q(t, z) = sup{ϕ(t, z) : ϕ ∈ H(Cn+1), ϕ(1, z) ≤ Q(z) on K}.

3.4. Theorem. Let X be a compact Kahler manifold and S a smooth hypersurface
in X. Let E be an ω-pluripolar subset in X\S. Then E∗

X ∩ S is also ωS-pluripolar
in S.

Proof. Take v ∈ PSH(X, ω), v �≡ −∞ such that E ⊂ {v = −∞} and v ≤ −1. Let
Ωj be an increasing sequence of smooth domains exhausting X\S. For each ε > 0
and j ≥ 1, set

uε,j = sup{ϕ ∈ PSH(X, ω) : ϕ ≤ max(εv,−2j) on Ωj}.

It is easy to see that for each j ≥ 1,

max(εv,−2j) ≤ uε,j ≤ VΩj
, supp ωn

uε,j
⊂ Ω̄j

and uε,j ↗ VΩj
a.e. on X as ε → 0. By Corollary 2.5 it follows that uε,j ↗ VΩj

≥ 0
on S\Fj as ε → 0, where Fj is an ωS-pluripolar set in S. Take z0 ∈ S\(

⋃∞
j=1 Fj)

and εj > 0 such that

uε,j(z0) ≥ − 1
2j

for j ≥ 1. Set

u =
∞∑

j=1

uεj ,j

2j
.

Then u is ω-psh on X satisfying u = −∞ on E. Moreover u(z0) ≥ −1. Thus
E∗

X ∩ S is ωS-pluripolar in S. The theorem is proved. �
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