On the convergence in capacity on compact Kahler manifolds and its applications

Author:
Pham Hoang Hiep

Journal:
Proc. Amer. Math. Soc. **136** (2008), 2007-2018

MSC (2000):
Primary 32W20; Secondary 32Q15

DOI:
https://doi.org/10.1090/S0002-9939-08-09043-6

Published electronically:
February 12, 2008

MathSciNet review:
2383507

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main aim of the present note is to study the convergence in on a compact Kahler mainfold . The obtained results are used to study global extremal functions and describe the -pluripolar hull of an -pluripolar subset in .

**[Bl]**Z. Blocki,*Uniqueness and stability for the complex Monge-Ampère equation on compact Kahler manifolds*, Indiana Univ. Math. J.**52**(2003), no. 6, 1697-1701. MR**2021054 (2004m:32073)****[BT1]**E. Bedford and B. A. Taylor,*The Dirichlet problem for the complex Monge-Ampère operator*, Invent. Math.**37**(1976), 1-44. MR**0445006 (56:3351)****[BT2]**E. Bedford and B. A. Taylor,*A new capacity for plurisubharmonic functions*, Acta Math.**149**(1982), 1-40. MR**674165 (84d:32024)****[BT3]**E. Bedford and B. A. Taylor,*Plurisubhurmonic functions with logarithmic singularities*, Ann. Inst. Fourier**38**(1988), 133-171. MR**978244 (90f:32016)****[BT4]**E. Bedford and B. A. Taylor,*Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth*, Indiana Univ. Math. J.**38**(1989), 455-469. MR**997391 (90i:32025)****[Ce1]**U. Cegrell,*Pluricomplex energy*, Acta Mathematica**180**(1998), 187-217. MR**1638768 (99h:32016)****[Ce2]**U. Cegrell,*The general definition of the complex Monge-Ampère operator*, Ann. Inst. Fourier (Grenoble)**54**(2004), 159-179. MR**2069125 (2005d:32062)****[Ce3]**U. Cegrell,*Convergence in capacity*, Technical report, Issac Newton Institute for Mathematical Sciences, 2001.**[GZ]**V. Guedj and A. Zeriahi,*Intrinsic capacities on compact Kahler manifolds*, J. Geom. Anal.**15**(2005), no. 4, 607-639. MR**2203165 (2006j:32041)****[Ho]**L. Hörmander,*Notions of Convexity*, Progress in Mathematics**127**, Birkhäuser, Boston, 1994. MR**1301332 (95k:00002)****[Ko1]**S. Kołodziej,*Capacities associated to the Siciak extremal function*, Ann. Polon. Math.**XLIX**(1989), 279-290. MR**997520 (90h:32039)****[Ko2]**S. Kołodziej,*The Monge-Ampère equation on compact Kahler manifolds*, Indiana Univ. Math. J.**52**(2003), 667-686. MR**1986892 (2004i:32062)****[Si]**J. Siciak,*Extremal plurisubharmonic functions in*, Ann. Polon. Math.**XXXIX**(1981), 175-210. MR**617459 (83e:32018)****[Xi1]**Y. Xing,*Continuity of the complex Monge-Ampère operator*, Proc. Amer. Math. Soc.**124**(1996), 457-467. MR**1322940 (96d:32015)****[Xi2]**Y. Xing,*Complex Monge-Ampère measures of pluriharmonic functions with bounded values near the boundary*, Canad. J. Math.**52**(2000), 1085-1100. MR**1782339 (2001h:32070)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
32W20,
32Q15

Retrieve articles in all journals with MSC (2000): 32W20, 32Q15

Additional Information

**Pham Hoang Hiep**

Affiliation:
Department of Mathematics, University of Education (Dai hoc Su Pham Ha Noi), CauGiay, Hanoi, Vietnam

Email:
phhiep_vn@yahoo.com

DOI:
https://doi.org/10.1090/S0002-9939-08-09043-6

Keywords:
Complex Monge-Amp\`{e}re operator,
$\omega$-plurisubharmonic functions,
compact Kahler manifold

Received by editor(s):
September 30, 2006

Received by editor(s) in revised form:
December 11, 2006

Published electronically:
February 12, 2008

Additional Notes:
This work is supported by the National Research Program for Natural Sciences, Vietnam.

Communicated by:
Mei-Chi Shaw

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.