ON EXCEPTIONAL EIGENVALUES OF THE LAPLACIAN FOR $\Gamma_0(N)$

XIAN-JIN LI

(Communicated by Wen-Ching Winnie Li)

Abstract. An explicit Dirichlet series is obtained, which represents an analytic function of s in the half-plane $\Re s > 1/2$ except for having simple poles at points s_j that correspond to exceptional eigenvalues λ_j of the non-Euclidean Laplacian for Hecke congruence subgroups $\Gamma_0(N)$ by the relation $\lambda_j = s_j(1 - s_j)$ for $j = 1, 2, \ldots, S$. Coefficients of the Dirichlet series involve all class numbers h_d of real quadratic number fields. But, only the terms with $h_d \gg d^{1/2-\epsilon}$ for sufficiently large discriminants d contribute to the residues $m_j/2$ of the Dirichlet series at the poles s_j, where m_j is the multiplicity of the eigenvalue λ_j for $j = 1, 2, \ldots, S$. This may indicate (I'm not able to prove yet) that the multiplicity of exceptional eigenvalues can be arbitrarily large. On the other hand, by density theorem the multiplicity of exceptional eigenvalues is bounded above by a constant depending only on N.

1. Introduction

Let N be a positive integer. Denote by $\Gamma_0(N)$ the Hecke congruence subgroup of level N. The non-Euclidean Laplacian Δ on the upper half-plane \mathcal{H} is given by

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).$$

Let D be the fundamental domain of $\Gamma_0(N)$. Eigenfunctions of the discrete spectrum of Δ are nonzero real-analytic solutions of the equation $\Delta \psi = \lambda \psi$ such that $\psi(\gamma z) = \psi(z)$ for all γ in $\Gamma_0(N)$ and such that ψ is square integrable on D with respect to the Poincaré measure dz of the upper half-plane.

The Hecke operators T_n, $n = 1, 2, \ldots, (n, N) = 1$, which act in the space of automorphic functions with respect to $\Gamma_0(N)$, are defined by

$$(T_n f)(z) = \frac{1}{\sqrt{n}} \sum_{ad=n, 0 \leq b < d} f \left(\frac{az + b}{d} \right).$$

It is well-known (see Iwaniec [3]) that there exists a maximal orthonormal system of eigenfunctions of Δ such that each of them is an eigenfunction of all the Hecke operators. Let $\lambda_j, j = 1, 2, \ldots$, be an enumeration in increasing order of all positive discrete eigenvalues of Δ for $\Gamma_0(N)$ with an eigenvalue of multiplicity m appearing
Let λ_j be the set of all the positive integers d such that $d \equiv 0$ or 1 (mod 4) and such that d is not a square of an integer. In this paper, we indicate an elementary approach towards the Selberg eigenvalue conjecture. Namely, we prove the following theorem.

Theorem 1. Let

$$L(s) = \sum_{k | N} \sum_{d \in \Omega, k | u_d} \prod_{p | N/k} p^j \prod_{p | N/k} (1 + \left(\frac{d}{p} \right)) h^j \frac{\ln \epsilon_d}{(du_d^2)^s} - \sum_{d \in \Omega} \frac{h^j \ln \epsilon_d}{(du_d^2)^s}$$

where (v_d, u_d) is the smallest positive solution of Pell’s equation $v^2 - du^2 = 4$ and the product on p^j is over all distinct primes p with p^j being the greatest even j-power factor of $(d, N/k)$. Then $L(s)$ represents an analytic function of s in the half-plane $\Re s > 1/2$ except for having simple poles at $s_j = \frac{1}{2} - i\kappa_j$, $j = 1, 2, \cdots, S$. Moreover, we have

$$m_j = 2 \text{Res}_{s=s_j} L(s)$$

for $j = 1, 2, \cdots, S$.

Corollary 2. If N is square free, then the series

$$L_1(s) = \sum_{m | N, k | N} \mu((m, k)) \sum_{d \in \Omega, k | u_d} \left(\frac{d}{m} \right) h^j \frac{\ln \epsilon_d}{(du_d^2)^s}$$

represents an analytic function of s in the half-plane $\Re s > 1/2$ except for having simple poles at $s_j = \frac{1}{2} - i\kappa_j$, $j = 1, 2, \cdots, S$, where (v_d, u_d) is the smallest positive solution of Pell’s equation $v^2 - du^2 = 4$. Moreover, we have

$$m_j = 2 \text{Res}_{s=s_j} L_1(s).$$

This work was initiated while the author attended the workshop on Eisenstein Series and Applications at the American Institute of Mathematics (AIM), August 15-19, 2005. He wants to thank AIM for the invitation to attend the workshop. The author is grateful to the referee for pointing out two inaccuracies in the original version of the manuscript and for the suggestion of improving the presentation of the paper.
2. Proofs of Theorem 1 and Corollary 2

We denote by \(h_d \) the class number of indefinite rational quadratic forms with discriminant \(d \). Let

\[
\epsilon_d = \frac{v_0 + u_0 \sqrt{d}}{2},
\]

where the pair \((v_0, u_0)\) is the smallest positive solution of Pell’s equation \(v^2 - du^2 = 4 \).

Lemma 2.1. Let \(d \) and \(d_1 \) be integers in \(\Omega \). If \(d_1 = dl^2 \), then

\[
h_{d_1} \ln \epsilon_{d_1} = l \prod_{p|l} \left(1 - \left(\frac{d}{p} \right)^{p-1} \right) h_d \ln \epsilon_d.
\]

Proof. The stated identity follows from Dirichlet’s class number formula (see, §100 of Dirichlet [2])

\[
h_{d_1} \ln \epsilon_{d_1} = \sqrt{d_1} L(1, \chi_{d_1})
\]

and the identity

\[
L(1, \chi_{d_1}) = L(1, \chi_d) \prod_{p|l} \left(1 - \left(\frac{d}{p} \right)^{p-1} \right).
\]

\(\square \)

Lemma 2.2. Let \(d \) and \(d_1 \) be integers in \(\Omega \), and let \(d_1 = dl^2 \). Then \(\epsilon_{d_1} = \epsilon_d^{\nu_l} \) for a positive integer \(\nu_l \).

Proof. If \((v_1, u_1)\) is the smallest positive solution of Pell’s equation (2.1)

\[
v^2 - dl^2 u^2 = 4,
\]

then

\[
\epsilon_{d_1} = \frac{v_1 + \sqrt{d_1} u_1}{2}.
\]

Let \((v_0, u_0)\) be the smallest positive solution of Pell’s equation (2.2)

\[
v^2 - du^2 = 4.
\]

By §85 of Dirichlet [2], all positive solutions \((v, u)\) of (2.2) are given by the formula

\[
\frac{v + \sqrt{du}}{2} = \left(\frac{v_0 + \sqrt{du_0}}{2} \right)^n
\]

for positive integers \(n \). Since \((v_1, lu_1)\) is a positive solution of (2.2), there exists a positive integer \(\nu_l \) such that

\[
\frac{v_1 + \sqrt{d_1} u_1}{2} = \left(\frac{v_0 + \sqrt{du_0}}{2} \right)^{\nu_l}.
\]

\(\square \)

Lemma 2.3. Let \(N \) be any positive integer, and let

\[
L_N(s) = \sum_{k|N} k^{1-2s} \sum_{d \in \Omega} \sum_u \prod_{p|k} \left(1 - \left(\frac{d}{p} \right) p^{-1} \right) \prod_{p|k} \frac{h_d \ln \epsilon_d}{(du^2)^s}.
\]
for $\Re s > 1$, where the sum on u is over all positive integers u such that $\sqrt{1 + dk^2u^2} \in \mathbb{Z}$ and where the product on p^{2i} is over all distinct primes p with p^{2i} being the greatest even p-power factor of $(d, N/k)$. Then $L_N(s)$ is analytic for $\Re s > 1$ and has analytic continuation to the half-plane $\Re s > 1/2$ except for having simple poles at $s = 1$ and $s_j = 1/2 - i\kappa_j$, $j = 1, 2, \ldots, S$. Moreover, we have

$$m_j = 2\text{Res}_{s=s_j}L_N(s)$$

for $j = 1, 2, \ldots, S$.

Proof. Let

$$h(r) = 4^s \sqrt{\pi} \frac{\Gamma(s - 1/2)}{\Gamma(s)} \int_0^\infty \left(u + \frac{1}{u} + 2 \right)^{1/2-s} u^{ir-1} du$$

for $\Re s > 1/2$. Then the lemma follows from Theorem 4.3, the proof of Lemma 5.3, the proof of Theorem 1 in Li [7], and the Selberg trace formula

$$h(-i/2) + \sum_{j=1}^\infty h(\kappa_j)m_j = 4^{1/2+s} \sqrt{\pi} \frac{\Gamma(s - 1/2)}{\Gamma(s)} L_N(s) + f(s)$$

for $\Re s > 1$ where $f(s)$ is a certain analytic function of s in the half-plane $\Re s \geq 1/2$ except for a possible pole at $s = 1/2$ (see (4.4) of Li [7]).

Remark 2.4. Siegel [11] proved that

$$\lim_{d \to \infty} \frac{\ln(h_d \ln \epsilon_d)}{\ln d} = \frac{1}{2}.$$ \hspace{1cm} (2.3)

Lemma 2.5. Let

$$\tilde{L}_N(s) = \sum_{k|N} \sum_{|d| \in \Omega} \prod_{p|d} p^j \prod_{p|N/k} \left(1 + \left(\frac{d}{p} \right) \frac{h_d \ln \epsilon_d}{(du^2)^s} \right)$$

for $\Re s > 1$, where (v_d, u_d) is the smallest positive solution of Pell’s equation $v^2 - du^2 = 4$ and the product on p^{2i} is over all distinct primes p with p^{2i} being the greatest even p-power factor of $(d, N/k)$. Then $\tilde{L}_N(s)$ is analytic for $\Re s > 1$ and has analytic continuation to the half-plane $\Re s > 1/2$ except for having simple poles at $s = 1$ and $s_j = 1/2 - i\kappa_j$, $j = 1, 2, \ldots, S$. Moreover, we have

$$m_j = 2\text{Res}_{s=s_j}\tilde{L}_N(s).$$

Proof. By Lemma 2.3, the function

$$L_N(s) = \sum_{k|N} k^{-2s} \sum_{d|\Omega} \prod_{p|d} p^j \prod_{p|N/k} \left(1 + \left(\frac{d}{p} \right) \frac{h_d \ln \epsilon_d}{(du^2)^s} \right)$$

has analytic continuation to the half-plane $\Re s > 1/2$ except for having simple poles at $s = 1$ and $s_j = 1/2 - i\kappa_j$, $j = 1, 2, \ldots, S$, where the sum on u is over all positive solutions of Pell’s equation

$$v^2 - dk^2u^2 = 4.$$ \hspace{1cm} (2.5)
Let \((v_k, u_k)\) be the smallest positive solution of (2.5). By §85 of Dirichlet [2], all positive solutions \((v, u)\) of (2.5) are given by the formula
\[
v + \sqrt{du} = \left(\frac{v_k + \sqrt{d}u_k}{2}\right)^n
\]
for \(n = 1, 2, \ldots\). Hence, we have
\[
\sqrt{d}u = \left(\frac{v_k + \sqrt{d}u_k}{2}\right)^n \left(1 - \left(\frac{v_k + \sqrt{d}u_k}{2}\right)^{-2n}\right)
\]
(2.6)
\[
> \left(\frac{v_k + \sqrt{d}u_k}{2}\right)^n (1 + 2/\sqrt{d})^{-1}.
\]
Let \(\sigma = \Re s > 1/2\), and let \(\tau(n)\) be the number of positive divisors of an integer \(n\). By (2.6) and (2.3), we have
\[
\left| \sum_{k|N} k^{1-2\sigma} \sum_{d \in \Omega} \sum_{u \neq u_k, p^2|d} \prod_{p | N/k} (1 + \left(\frac{d}{p}\right)) \prod_{p | k} (1 - \left(\frac{d}{p}\right))^{p-1} \frac{h_d \ln \epsilon_d}{(du)^s} \right|
\]
\[
\leq \sum_{k|N} \sqrt{kN} 2^{\tau(N)} \sum_{d \in \Omega} (1 + 2/\sqrt{d})^{2\sigma} h_d \ln \epsilon_d \sum_{n=2}^{\infty} \left(\frac{v_k + \sqrt{d}u_k}{2}\right)^{-2n\sigma}
\]
\[
\leq \sum_{k|N} \sqrt{kN} 2^{\tau(N)} 3^{2\sigma+1} \sum_{d \in \Omega} h_d \ln \epsilon_d \left(\frac{v_k + \sqrt{d}u_k}{2}\right)^{-2\sigma}
\]
\[
\leq 16^{\sigma} N^{2\sigma} 3^{2\sigma+1} \sum_{k|N} \sum_{d \in \Omega} d^{1/2+\epsilon-2\sigma} (k u_k)^{-4\sigma}.
\]
Note that \(\tau(n) \ll n^\epsilon\) as \(n \to \infty\). Since, for a fixed positive integer \(v\), there are at most \(\tau(v^2 - 4)\) number of \(d\)'s in \(\Omega\) such that \(v^2 - du^2 = 4\) for positive integers \(u\), we have
\[
\sum_{d \in \Omega} d^{1/2+\epsilon-2\sigma} (k u_k)^{-4\sigma} \leq \sum_{d \in \Omega} (v^2 - 4)^{-\sigma} \leq \sum_{v=3}^{\infty} \frac{\tau(v^2 - 4)}{(v^2 - 4)^{\sigma}} \ll \sum_{v=3}^{\infty} \frac{1}{(v^2 - 4)^{\sigma-\epsilon}} < \infty
\]
for \(\sigma > 1/2\). Hence, the series
\[
\sum_{k|N} k^{1-2\sigma} \sum_{d \in \Omega} \sum_{u \neq u_k, p^2|d} \prod_{p | N/k} (1 + \left(\frac{d}{p}\right)) \prod_{p | k} (1 - \left(\frac{d}{p}\right))^{p-1} \frac{h_d \ln \epsilon_d}{(du)^s},
\]
represents an analytic function of \(s\) in the half-plane \(\Re s > 1/2\). It follows from (2.4) that the function
\[
\sum_{k|N} k^{1-2\sigma} \sum_{d \in \Omega} \prod_{p | N/k} (1 + \left(\frac{d}{p}\right)) \prod_{p | k} (1 - \left(\frac{d}{p}\right))^{p-1} \frac{h_d \ln \epsilon_d}{(du)^s}
\]
has analytic continuation to the half-plane \(\Re s > 1/2\) except for having simple poles at \(s = 1\) and \(s_j = \frac{1}{2} - i\kappa_j\), \(j = 1, 2, \ldots, S\).

Next, let \((v_0, u_0)\) be the smallest positive solution of Pell’s equation
\[
v^2 - du^2 = 4.
\]
Let k be a divisor of N. If (v_k, ku_k) is a solution of (2.8) different from (v_0, u_0), then by Lemma 2.2 there exists an integer $n \geq 2$ such that

$$\frac{v_k + \sqrt{d} ku_k}{2} = \left(\frac{v_0 + \sqrt{d} u_0}{2}\right)^n.$$

Hence, we have

$$\sqrt{d} ku_k = \left(\frac{v_0 + \sqrt{d} u_0}{2}\right)^n \left(1 - \left(\frac{v_0 + \sqrt{d} u_0}{2}\right)^{-2n}\right)$$

\[(2.9) \]

$$> \left(\frac{v_0 + \sqrt{d} u_0}{2}\right)^n (1 + 2/\sqrt{d})^{-1}. $$

By (2.9) and (2.3), we have

$$|\sum_{k|N} k^{1-2s} \sum_{d \in \Omega, ku_k \neq u_0} \prod_{p|N/k} p^l \prod_{p|k} \left(1 + \left(\frac{d}{p}\right)\right) \prod_{p|k} (1 - \left(\frac{d}{p}\right)p^{-1}) \frac{h_d \ln \epsilon_d}{(d u_k^2)^s}|$$

$$\leq \sum_{k|N} \sqrt{k} N 2^{\tau{(N)}} \sum_{d \in \Omega, ku_k \neq u_0} (1 + 2/\sqrt{d})^{2\sigma} h_d \ln \epsilon_d \left(\frac{v_0 + \sqrt{d} u_0}{2}\right)^{-2n\sigma}$$

$$\leq \sum_{k|N} \sqrt{k} N 2^{\tau{(N)}} 9^\sigma \sum_{d \in \Omega, ku_k \neq u_0} h_d \ln \epsilon_d \left(\frac{v_0 + \sqrt{d} u_0}{2}\right)^{-4\sigma}$$

$$\leq 16^\sigma \tau{(N)} N 2^{\tau{(N)}} 9^\sigma \sum_{d \in \Omega} d^{1/2 + \epsilon - 2\sigma} u_0^{-4\sigma}.$$

Since

$$\sum_{d \in \Omega} d^{1/2 + \epsilon - 2\sigma} u_0^{-4\sigma} \leq \sum_{d \in \Omega} (v_0^2 - 4)^{-\sigma} \leq \sum_{v=3}^{\infty} \frac{\tau{(v^2 - 4)}}{(v^2 - 4)^{\sigma - \epsilon}} \ll \sum_{v=3}^{\infty} \frac{1}{(v^2 - 4)^{\sigma - \epsilon}} < \infty$$

for $\sigma > 1/2$, the series

$$\sum_{k|N} k^{1-2s} \sum_{d \in \Omega, ku_k \neq u_0} \prod_{p|N/k} p^l \prod_{p|k} \left(1 + \left(\frac{d}{p}\right)\right) \prod_{p|k} (1 - \left(\frac{d}{p}\right)p^{-1}) \frac{h_d \ln \epsilon_d}{(d u_k^2)^s}$$

represents an analytic function of s in the half-plane $\Re{s} > 1/2$. It follows from (2.7) that the function

\[(2.10) \]

$$\sum_{k|N} k \sum_{d \in \Omega, ku_0 \neq u_0} \prod_{p|N/k} p^l \prod_{p|k} \left(1 + \left(\frac{d}{p}\right)\right) \prod_{p|k} (1 - \left(\frac{d}{p}\right)p^{-1}) \frac{h_d \ln \epsilon_d}{(d u_0^2)^s}$$

has analytic continuation to the half-plane $\Re{s} > 1/2$ except for having simple poles at $s = 1$ and $s_j = \frac{1}{2} - i\kappa_j$, $j = 1, 2, \ldots, S$, where the product on p^{2l} is over all distinct primes p with p^{2l} being the greatest even p-power factor of $(d, N/k)$. By Lemma 2.1 we can write (2.10) as

$$\sum_{k|N} \sum_{d \in \Omega, ku_0 \neq u_0} \prod_{p|N/k} p^l \prod_{p|k} (1 + \left(\frac{d}{p}\right)\frac{h_{dk^2} \ln \epsilon_{dk^2}}{(d u_0^2)^s}).$$

This completes the proof of the lemma.

\square
Proof of Theorem 1. It is proved in [6] that the series

\[F(s) = \sum_{d \in \Omega} \frac{h_d \ln \epsilon_d}{d^s} \sum_{u > 0 \atop v^2 - du^2 = 4} \frac{1}{u^{2s}} \]

represents an analytic function of \(s \) in the half-plane \(\Re s > 1/2 \) except for having a simple poles at \(s = 1 \). By (2.3), (3.4), (3.5), Lemma 3.5, Lemma 4.1, and Lemma 4.2 of [6], we have that

(2.11) \[F(s) - h(-i/2) \]

is analytic in the half-plane \(\Re s > 1/2 \). Let \((v_d, u_d)\) be the smallest positive solution of Pell’s equation \(v^2 - du^2 = 4 \). If \(u \neq u_d \), then

\[\frac{v + \sqrt{d}u}{2} = \left(\frac{v_d + \sqrt{d}u_d}{2} \right)^\nu \]

for some positive integer \(\nu \geq 2 \). Similarly as in (2.9), we can obtain that

\[\sqrt{du} \geq \frac{1}{3} \epsilon_d^\nu. \]

It follows that

(2.12) \[\left| \sum_{d \in \Omega} \frac{h_d \ln \epsilon_d}{d^s} \sum_{u \neq u_d \atop v^2 - du^2 = 4} \frac{1}{u^{2s}} \right| \leq 9 \sum_{d \in \Omega} \frac{h_d \ln \epsilon_d}{\epsilon_d^{\frac{3}{2}}} \leq 2^{4\sigma} \sum_{d \in \Omega} d^{1/2 + \epsilon - 2\sigma} u_d^{-4\sigma} < \infty \]

for \(\sigma = \Re s > 1/2 \). Let

\[l(s) = \sum_{d \in \Omega} \frac{h_d \ln \epsilon_d}{(du_d)^s}. \]

By (2.11) and (2.12), we obtain that

(2.13) \[l(s) - h(-i/2) \]

is analytic in the half-plane \(\Re s > 1/2 \).

Let \(\bar{L}_N(s) \) be given as in Lemma 2.5. Then by (1.4), (4.4), (4.5), Theorem 4.3, Lemma 5.1, and Lemma 5.3 of [7], we have that

(2.14) \[\bar{L}_N(s) - h(-i/2) \]

is an analytic function of \(s \) in the half-plane \(\Re s > 1/2 \) except for simple poles at \(s = 1/2 - i\kappa_j, j = 1, 2, \ldots, S \). It follows from (2.13) and (2.14) that

\[L(s) = \bar{L}_N(s) - l(s) \]

represents an analytic function of \(s \) in the half-plane \(\Re s > 1/2 \) except for simple poles at \(s_j = 1/2 - i\kappa_j, j = 1, 2, \ldots, S \). Moreover, we have

\[m_j = 2 \text{Res}_{s=s_j} L(s) \]

for \(j = 1, 2, \ldots, S \).

This completes the proof of the theorem. \(\square \)
Proof of Corollary 2. By Theorem 1 the series
\[
\sum_{k \mid N} \sum_{d \in \Omega, k \mid u_d} \prod_{p \mid d} \prod_{p \mid k} \left\{ 1 + \left(\frac{d}{p} \right) \right\} \prod_{p \mid k} \left\{ 1 - \frac{1}{p} \left(\frac{d}{p} \right) \right\} \frac{h_d \ln \epsilon_d}{(du_d^2)^s} - \sum_{d \in \Omega} h_d \ln \epsilon_d \left(\frac{d}{m} \right)
\]
represents an analytic function of \(s \) in the half-plane \(\Re s > 1/2 \) except for having simple poles at \(s_j = \frac{1}{2} - i\pi j \), \(j = 1, 2, \ldots, S \), where \((v_d, u_d)\) is the smallest positive solution of Pell’s equation \(v^2 - du^2 = 4 \) and the product on \(p^2 \) is over all distinct primes \(p \) with \(p^2 \) being the greatest even \(p \)-power factor of \((d, N/k)\). Moreover, we have
\[
m_j = 2 \text{Res}_{s=s_j} L(s)
\]
for \(j = 1, 2, \ldots, S \).

Since \(N \) is square free, we have
\[
\prod_{p \mid N/k} \left\{ 1 + \left(\frac{d}{p} \right) \right\} \prod_{p \mid k} \left\{ 1 - \frac{1}{p} \left(\frac{d}{p} \right) \right\} = \sum_{m \mid N} \frac{\mu(m, k)}{(m, k)} \left(\frac{d}{m} \right)
\]
where \(\mu(n) \) is the Möbius function and \((m, k)\) denotes the greatest common divisor of \(m \) and \(k \). By using the identity (2.15), we can write
\[
\sum_{k \mid N} \sum_{d \in \Omega, k \mid u_d} \prod_{p \mid d} \prod_{p \mid k} \left\{ 1 + \left(\frac{d}{p} \right) \right\} \prod_{p \mid k} \left\{ 1 - \frac{1}{p} \left(\frac{d}{p} \right) \right\} \frac{h_d \ln \epsilon_d}{(du_d^2)^s} - \sum_{d \in \Omega} h_d \ln \epsilon_d \left(\frac{d}{m} \right)
\]
\[
= \sum_{m \mid N, k \mid N} k \mu((m, k)) \sum_{d \in \Omega, k \mid u_d} \left(\frac{d}{m} \right) \frac{h_d \ln \epsilon_d}{(du_d^2)^s} - \sum_{d \in \Omega} h_d \ln \epsilon_d \left(\frac{d}{m} \right)
\]
\[
= \sum_{m \mid N, k \mid N} k \mu((m, k)) \sum_{d \in \Omega, k \mid u_d} \left(\frac{d}{m} \right) \frac{h_d \ln \epsilon_d}{(du_d^2)^s}.
\]

It then follows that the series
\[
L_1(s) = \sum_{m \mid N, k \mid N} k \mu((m, k)) \sum_{d \in \Omega, k \mid u_d} \left(\frac{d}{m} \right) \frac{h_d \ln \epsilon_d}{(du_d^2)^s}
\]
represents an analytic function of \(s \) in the half-plane \(\Re s > 1/2 \) except for having simple poles at those points \(s_j = \frac{1}{2} - i\pi j \), \(j = 1, 2, \ldots, S \), where \((v_d, u_d)\) is the smallest positive solution of Pell’s equation \(v^2 - du^2 = 4 \). Moreover, we have
\[
m_j = 2 \text{Res}_{s=s_j} L_1(s)
\]
for \(j = 1, 2, \ldots, S \).

This completes the proof of the corollary. \(\square \)

References
4. H. Kim, * Functoriality for the exterior square of GL(4) and the symmetric fourth of GL(2). With the appendix: Refined estimates towards the Ramanujan and Selberg conjectures (by H. Kim and P. Sarnak)*, J. Amer. Math. Soc. 16 (2003), 139–183. MR1937203 (2003k:11083)

Department of Mathematics, Brigham Young University, Provo, Utah 84602

E-mail address: xianjin@math.byu.edu