Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Radial limits of inner functions and Bloch spaces


Author: Evgueni Doubtsov
Journal: Proc. Amer. Math. Soc. 136 (2008), 2177-2182
MSC (2000): Primary 32A40; Secondary 30D40
DOI: https://doi.org/10.1090/S0002-9939-08-09215-0
Published electronically: February 20, 2008
MathSciNet review: 2383523
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be an inner function in the unit ball $ B_n \subset\mathbb{C}^n$, $ n\ge 1$. Assume that

$\displaystyle \sup_{z\in B_n} \frac{\vert\mathcal{R} f(z)\vert(1-\vert z\vert^2)^{1+\beta}}{\left(1-\vert f(z)\vert^2 \right)^2} < \infty, $

where $ \beta\in (0,1)$ and $ \mathcal{R} f$ is the radial derivative. Then, for all $ \alpha\in\partial B_1$, the set $ \{\zeta\in \partial B_n:\, f^*(\zeta) =\alpha\}$ has a non-zero real Hausdorff $ t^{2n-1-\beta}$-content, and it has a non-zero complex Hausdorff $ t^{n-\beta}$-content.


References [Enhancements On Off] (What's this?)

  • 1. A.B. Aleksandrov, Function theory in the ball, in: G.M. Khenkin, A.G. Vitushkin (Eds.), Encyclopaedia Math. Sci. 8 (Several Complex Variables. II), Springer-Verlag, Berlin, 1994, pp. 107-178. MR 1298905 (95e:32001)
  • 2. A.B. Aleksandrov, J.M. Anderson, and A. Nicolau, Inner functions, Bloch spaces and symmetric measures, Proc. London Math. Soc. 79 (1999), 318-352. MR 1702245 (2000g:46029)
  • 3. J.J. Donaire, Radial behaviour of inner functions in $ \mathcal{B}_0$, J. London Math. Soc. (2) 63 (2001), 141-158. MR 1802763 (2001m:30038)
  • 4. E. Doubtsov, Little Bloch functions, symmetric pluriharmonic measures and Zygmund's dichotomy, J. Funct. Anal. 170 (2000), 286-306. MR 1740654 (2001f:32006)
  • 5. J.L. Fernández, D. Pestana, and J.M. Rodriguez, Distortion of boundary sets under inner functions. II, Pacific J. Math. 172 (1996), 49-81. MR 1379286 (97b:30035)
  • 6. N.G. Makarov, Smooth measures and the law of the iterated logarithm, Math. USSR Izvestiya 34 (1990), 455-463. MR 998306 (90h:30007)
  • 7. S. Rohde, On functions in the little Bloch space and inner functions, Trans. Amer. Math. Soc. 348 (1996), 2519-2531. MR 1322956 (96i:30028)
  • 8. W. Rudin, Function theory in the unit ball of $ \mathbb{C}^n$, Grundlehren der Mathematischen Wissenschaften, vol. 241, Springer-Verlag, Berlin-New York, 1980. MR 601594 (82i:32002)
  • 9. H.S. Shapiro, Weakly invertible elements in certain function spaces, and generators in $ \ell^1$, Michigan Math. J. 11 (1964), 161-165. MR 0166343 (29:3620)
  • 10. K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155 (2006d:46035)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32A40, 30D40

Retrieve articles in all journals with MSC (2000): 32A40, 30D40


Additional Information

Evgueni Doubtsov
Affiliation: St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia
Email: dubtsov@pdmi.ras.ru

DOI: https://doi.org/10.1090/S0002-9939-08-09215-0
Keywords: Boundary behavior, inner functions
Received by editor(s): January 26, 2007
Received by editor(s) in revised form: April 28, 2007
Published electronically: February 20, 2008
Additional Notes: The author is partially supported by RFFI grant no. 08-01-00358-a and by the Russian Science Support Foundation.
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society