Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Non-vanishing of the twisted cohomology on the complement of hypersurfaces


Author: Yukihito Kawahara
Journal: Proc. Amer. Math. Soc. 136 (2008), 1967-1975
MSC (2000): Primary 14F40; Secondary 14C20, 32S22
DOI: https://doi.org/10.1090/S0002-9939-08-09224-1
Published electronically: February 15, 2008
MathSciNet review: 2383503
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generically, the cohomology with coefficients in a local system of rank one on the complement in $ \mathbb{P}^n$ of the union of a finite number of hypersurfaces vanishes except in the highest dimension. We study the non-generic case, in which the cohomology in other dimensions does not vanish. When the hypersurfaces are hyperplanes, many examples of this kind are known. In this paper, we consider the case in which the hypersurfaces need not be hyperplanes. We prove that the hypersurfaces given by some particular linear systems have non-vanishing local system cohomologies.


References [Enhancements On Off] (What's this?)

  • [A] K. Aomoto, Un théorème du type de Matsushima-Murakami concernant l'intégrale des fonctions multiformes, J. Math. Pures Appl. 52 (1973), 1-11. MR 0396563 (53:426)
  • [Ch] K. Cho, A generalization of Kita and Noumi's vanishing theorems of cohomology groups of local system, Nagoya Math. J. 147 (1997), 63-69. MR 1475166 (99a:14025)
  • [CDO] D. C. Cohen, A. Dimca, and P. Orlik, Nonresonance conditions for arrangements, Ann. Inst. Fourier 53 (2003), no. 6, 1883-1896. MR 2038782 (2005a:32027)
  • [CS] D. Cohen, and A. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999), 33-54. MR 1692519 (2000m:32036)
  • [De] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163 (1970). MR 0417174 (54:5232)
  • [Di] A. Dimca, Sheaves in topology, Universitext. Springer-Verlag, Berlin, 2004. xvi+236 pp. MR 2050072 (2005j:55002)
  • [ESV] H. Esnault, V. Schechtman and E. Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), 557-561; Erratum 112 (1993), 447. MR 1176205 (93g:32051)
  • [Fa] M. Falk, Arrangements and Cohomology, Annals of Comb. 1 (1997), 135-157. MR 1629681 (99g:52017)
  • [FT] M. Falk and H. Terao, $ \beta$NBC-bases for cohomology of local systems on hyperplane complements, Trans. Amer. Math. Soc.  349 (1997), no. 1, 189-202. MR 1401770 (97g:52029)
  • [H] R. Hartshorne, Algebraic Geometry, GTM 52, Springer, 1977. MR 0463157 (57:3116)
  • [Ha] A. Hattori, Topology of $ \mathbb{C}^{n}$ minus a finite number of affine hyperplanes in general position, J. Fac. Sci. Univ. Tokyo, Sect. IA 22 (1975), 205-219. MR 0379883 (52:788)
  • [Ka] Y. Kawahara, The twisted De Rham cohomology for Basic Constructions of Hyperplane arrangements and its applications, Hokkaido Mathematical Journal 34 (2005), no. 2, 489-505. MR 2159008 (2006e:14021)
  • [Ka2] Y. Kawahara, Vanishing and bases for cohomology of partially trivial local systems on hyperplane arrangements, Proceedings of the American Mathematical Society 133 (2005), 1907-1915. MR 2137854 (2007b:32044)
  • [Ka3] Y. Kawahara, The non-vanishing cohomology of Orlik-Solomon algebras, Tokyo Journal of Mathematics, 30 (2007), no. 1, 223-238. MR 2328065
  • [Ki] M. Kita, On vanishing of the twisted rational de Rham cohomology associated with hypergeometric functions, Nagoya Math. J. 135 (1994), 55-85. MR 1295817 (95j:33043)
  • [KN] M. Kita and M. Noumi, On the structure of cohomology groups attached to the integral of certain many-valued analytic functions, Japan. J. Math. 9 (1983), no. 1, 113-157. MR 722538 (84m:32040)
  • [Ko] T. Kohno, Homology of a local system on the complement of hyperplanes, Proc. Japan Acad. Ser. A 62 (1986), 144-147. MR 846350 (87i:32019)
  • [Li] A. Libgober, Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), 215-254, NATO Sci. Ser. II Math. Phys. Chem., 36, Kluwer Acad. Publ., Dordrecht, 2001. MR 1866902 (2003e:14008)
  • [Li2] A. Libgober, Homotopy groups of complements to ample divisors, math.AG/0404341.
  • [LY] A. Libgober and S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), no. 3, 337-361. MR 1761630 (2001j:52032)
  • [OT] P. Orlik, and H. Terao, Arrangements of Hyperplanes, Grundlehren der mathematischen Wissenschaften 300, Springer-Verlag, 1992. MR 1217488 (94e:52014)
  • [OT2] P. Orlik, and H. Terao, Arrangements and Hypergeometric integrals, MSJ, Mem. vol. 9, Math. Soc. Japan (2001). MR 1814008 (2003a:32048)
  • [STV] V. Schechtman, H. Terao and A. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995), 93-102. MR 1344845 (96j:32047)
  • [Yu] S. Yuzvinsky, Cohomology of the Brieskorn-Orlik-Solomon algebras, Comm. Algebra 23 (1995), 5339-5354. MR 1363606 (97a:52023)
  • [Yu2] S. Yuzvinsky, Realization of finite abelian groups by nets in $ \mathbb{P}\sp 2$. Compositio Math. 140 (2004), no. 6, 1614-1624. MR 2098405 (2005g:52057)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14F40, 14C20, 32S22

Retrieve articles in all journals with MSC (2000): 14F40, 14C20, 32S22


Additional Information

Yukihito Kawahara
Affiliation: Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
Email: kawahara@z2.keio.jp

DOI: https://doi.org/10.1090/S0002-9939-08-09224-1
Keywords: Local system, twisted cohomology, linear system, hypersurface complement, hyperplane arrangement.
Received by editor(s): February 26, 2006
Received by editor(s) in revised form: May 7, 2007
Published electronically: February 15, 2008
Communicated by: Ted Chinburg
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society