Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A decomposition theorem for frames and the Feichtinger Conjecture


Authors: Peter G. Casazza, Gitta Kutyniok, Darrin Speegle and Janet C. Tremain
Journal: Proc. Amer. Math. Soc. 136 (2008), 2043-2053
MSC (2000): Primary 46C05, 42C15, 46L05
DOI: https://doi.org/10.1090/S0002-9939-08-09264-2
Published electronically: February 21, 2008
MathSciNet review: 2383510
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the Feichtinger Conjecture in frame theory, which was recently shown to be equivalent to the 1959 Kadison-Singer Problem in $ C^{*}$-Algebras. We will show that every bounded Bessel sequence can be decomposed into two subsets each of which is an arbitrarily small perturbation of a sequence with a finite orthogonal decomposition. This construction is then used to answer two open problems concerning the Feichtinger Conjecture: 1. The Feichtinger Conjecture is equivalent to the conjecture that every unit norm Bessel sequence is a finite union of frame sequences. 2. Every unit norm Bessel sequence is a finite union of sets each of which is $ \omega$-independent for $ \ell_2$-sequences.


References [Enhancements On Off] (What's this?)

  • 1. J. Anderson, Extensions, restrictions, and representations of states on $ C^*$-algebras, Trans. Amer. Math. Soc. 249 (1979), 303-329. MR 525675 (80k:46069)
  • 2. J. Bourgain and L. Tzafriri, Invertibility of ``large'' submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), 137-224. MR 890420 (89a:46035)
  • 3. J. Bourgain and L. Tzafriri, On a problem of Kadison and Singer, J. Reine Angew. Math. 420 (1991), 1-43. MR 1124564 (92j:46104)
  • 4. M. Bownik and D. Speegle, The Feichtinger conjecture for wavelet frames, Gabor frames and frames of translates, Canad. J. Math. 58 (2006), 1121-1143. MR 2270922 (2007h:42044)
  • 5. P. G. Casazza, The art of frame theory, Taiwanese J. of Math. 4 (2000), 129-201. MR 1757401 (2001f:42046)
  • 6. P. G. Casazza, O. Christensen, A. Lindner, and R. Vershynin, Frames and the Feichtinger conjecture, Proc. Amer. Math. Soc. 133 (2005), 1025-1033. MR 2117203 (2006a:46024)
  • 7. P. G. Casazza, O. Christensen, and N. Kalton, Frames of translates, Collect. Math. 52 (2001), 35-54. MR 1833085 (2002f:42002)
  • 8. P. G. Casazza, M. Fickus, J. C. Tremain, and E. Weber, The Kadison-Singer problem in mathematics and engineering: a detailed account, in: Operator Theory, Operator Algebras, and Applications, D. Han, P. Jorgensen, and D. R. Larson, eds., Contemp. Math. 414, Amer. Math. Soc., Providence, RI (2006), 299-356. MR 2277219 (2007j:42016)
  • 9. P. G. Casazza and G. Kutyniok, Frames of subspaces, in: Wavelets, Frames, and Operator Theory, C. Heil, P. E. T. Jorgensen, and D. R. Larson, eds., Contemp. Math. 345, Amer. Math. Soc., Providence, RI (2004), 87-113. MR 2066823 (2005e:42090)
  • 10. P. G. Casazza, G. Kutyniok, and S. Li, Fusion Frames and Distributed Processing, Appl. Comput. Harmon. Anal. (to appear).
  • 11. P. G. Casazza and J. C. Tremain, The Kadison-Singer problem in mathematics and engineering, Proc. Natl. Acad. Sci. USA 103 (2006), 2032-2039. MR 2204073 (2006j:46074)
  • 12. P. G. Casazza and R. Vershynin, Kadison-Singer meets Bourgain-Tzafriri, preprint (2005).
  • 13. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003. MR 1946982 (2003k:42001)
  • 14. O. Christensen and A. Lindner, Decomposition of Riesz frames and wavelets into a finite union of linearly independent sets, Lin. Alg. Appl. 355 (2002), 147-159. MR 1930142 (2003g:42057)
  • 15. K. Gröchenig, Localized frames are finite unions of Riesz sequences, Adv. Comput. Math. 18 (2003), 149-157. MR 1968117 (2004a:42044)
  • 16. R. Kadison and I. Singer, Extensions of pure states, American Jour. Math. 81 (1959), 383-400. MR 0123922 (23:A1243)
  • 17. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence Spaces, Springer-Verlag, Berlin, 1977. MR 0500056 (58:17766)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46C05, 42C15, 46L05

Retrieve articles in all journals with MSC (2000): 46C05, 42C15, 46L05


Additional Information

Peter G. Casazza
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: pete@math.missouri.edu

Gitta Kutyniok
Affiliation: Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544
Email: kutyniok@math.princeton.edu

Darrin Speegle
Affiliation: Department of Mathematics and Computer Science, Saint Louis University, St. Louis, Missouri 63103
Email: speegled@slu.edu

Janet C. Tremain
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: janet@math.missouri.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09264-2
Keywords: Bessel sequence, decomposition, frame, Feichtinger Conjecture, frame sequence, Kadison-Singer Conjecture, $\omega$-independence, Riesz basic sequence
Received by editor(s): January 25, 2007
Published electronically: February 21, 2008
Additional Notes: The first author was supported by NSF Grant DMS 0405376.
The second author was supported by Deutsche Forschungsgemeinschaft (DFG) Research Fellowship KU 1446/5-1, by Preis der Justus-Liebig-Universität Gießen 2006, and by Deutsche Forschungsgemeinschaft (DFG) Heisenberg-Fellowship KU 1446/8-1.
The third author was supported by NSF Grant DMS 0354957.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society