Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Non-Gaussian upper estimates for heat kernels on spaces of homogeneous type


Authors: Dachun Yang and Yuan Zhou
Journal: Proc. Amer. Math. Soc. 136 (2008), 2155-2163
MSC (2000): Primary 47D60; Secondary 58J35
DOI: https://doi.org/10.1090/S0002-9939-08-09336-2
Published electronically: January 3, 2008
MathSciNet review: 2383521
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The authors extend non-Gaussian upper estimates on the positive real axis to a certain sector of $ \mathbb{C}$ including the positive real axis for heat kernels on spaces of homogeneous type, which are known to be holomorphic in that sector.


References [Enhancements On Off] (What's this?)

  • 1. W. Arendt, Gaussian estimates and interpolation of the spectrum in $ L\sp p$, Differential Integral Equations 7 (1994), 1153-1168. MR 1269649 (95e:47066)
  • 2. P. Auscher, X. T. Duong and A. McIntosh, Boundedness of Banach space valued singular integral operators and applications to Hardy spaces, preprint, 2004.
  • 3. G. Carron, T. Coulhon and E. M. Ouhabaz, Gaussian estimates and $ L\sp p$-boundedness of Riesz means, J. Evol. Equ. 2 (2002), 299-317. MR 1930609 (2003i:35116)
  • 4. R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer-Verlag, Berlin, 1971. MR 0499948 (58:17690)
  • 5. T. Coulhon and X. T. Duong, Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss, Adv. Differential Equations 5 (2000), 343-368. MR 1734546 (2001d:34087)
  • 6. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1990. MR 1103113 (92a:35035)
  • 7. E. B. Davies, $ L\sp p$ spectral independence and $ L\sp 1$ analyticity, J. London Math. Soc. (2) 52 (1995), 177-184. MR 1345724 (96e:47034)
  • 8. E. B. Davies, Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. (2) 55 (1997), 105-125. MR 1423289 (97i:58169)
  • 9. X. T. Duong and E. M. Ouhabaz, Gaussian upper bounds for heat kernels of a class of nondivergence operators, International Conference on Harmonic Analysis and Related Topics, Sydney, 2002, Proc. Centre Math. Appl. Austral. Nat. Univ., Vol. 41, Austral. Nat. Univ., Canberra, 2003, pp. 35-45. MR 1994513 (2004g:35104)
  • 10. X. T. Duong and D. W. Robinson, Semigroup kernels, Poisson bounds, and holomorphic functional calculus, J. Funct. Anal. 142 (1996), 89-128. MR 1419418 (97j:47056)
  • 11. X. T. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943-973. MR 2163867 (2006d:42037)
  • 12. X. T. Duong and L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), 1375-1420. MR 2162784 (2006i:26012)
  • 13. E. M. Ouhabaz, Gaussian estimates and holomorphy of semigroups, Proc. Amer. Math. Soc. 123 (1995), 1465-1474. MR 1232142 (95f:47068)
  • 14. E. M. Ouhabaz, Analysis of heat equations on domains, London Mathematical Society Monographs Series, 31, Princeton University Press, Princeton, NJ, 2005. MR 2124040 (2005m:35001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47D60, 58J35

Retrieve articles in all journals with MSC (2000): 47D60, 58J35


Additional Information

Dachun Yang
Affiliation: School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People’s Republic of China
Email: dcyang@bnu.edu.cn

Yuan Zhou
Affiliation: School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People’s Republic of China
Email: yuanzhou@mail.bnu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-08-09336-2
Keywords: Heat kernel, semigroup, time derivative, non-Gaussian upper estimate, space of homogeneous type
Received by editor(s): April 20, 2007
Published electronically: January 3, 2008
Additional Notes: The first author was supported by the National Science Foundation for Distinguished Young Scholars (No. 10425106) and NCET (No. 04-0142) of the Ministry of Education of China.
Communicated by: Hart F. Smith
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society