Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The complex Hessian equation with infinite Dirichlet boundary value


Authors: Ni Xiang and Xiao-Ping Yang
Journal: Proc. Amer. Math. Soc. 136 (2008), 2103-2111
MSC (2000): Primary 32A05, 35J60
DOI: https://doi.org/10.1090/S0002-9939-08-09354-4
Published electronically: February 18, 2008
MathSciNet review: 2383516
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence and nonexistence of the $ \Gamma$-subharmonic solutions for the complex Hessian equations with infinite Dirichlet boundary value are proved in the certain bounded domain in $ C^n$. We calculate the k-Hessian of the radially symmetric function and use radial functions to construct various barrier functions in this paper. Moreover, it is shown that the growth rate conditions are nearly optimal.


References [Enhancements On Off] (What's this?)

  • 1. L. Caffarelli, J.J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations, II:Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure. Appl. Math., 38 (1985), 209-252. MR 780073 (87f:35097)
  • 2. L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., 155(1985), 261-301. MR 806416 (87f:35098)
  • 3. S.Y. Cheng and S.-T. Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure. Appl. Math., 33(1980), 507-544. MR 575736 (82f:53074)
  • 4. S.Y. Cheng and S.T. Yau, The real Monge-Ampère equation and affine flat structures, Proc. 1980 Beijing Symp. on Diff. Geom. and Diff. Equations, Vol. I (S.S. Chern and W.T. Wu, eds.), Science Press, Beijing, 1982, 339-370. MR 714338 (85c:53103)
  • 5. K.S. Chou and X. Wang, A variational theory of the Hessian equation, Comm. Pure. Applied Math., 54(2001), 1029-1064. MR 1835381 (2002e:35072)
  • 6. B. Guan, The Dirichlet problem for a class of fully nonlinear elliptic equations, Comm. Partial Differential Equations, 19(1994), 339-416. MR 1265805 (95c:35100)
  • 7. B. Guan and H.-Y. Jian, The Monge-Ampère equation with infinite boundary value, Pacific Jour. Math., 216(2004), 77-94. MR 2094582 (2005f:35100)
  • 8. N.M. Ivochkina, Description of cones of stability generated by differential operators of Monge-Ampère type, Mat. Sb., 122(1983), 265-275 (Russian); English transl. Math. USSR Sb., 50(1985), 259-268. MR 717679 (85g:35043)
  • 9. Huai-Yu Jian, Hessian equations with infinite Dirichlet boundary value, Indiana Univ. Math. J., 55(2006), 1045-1062. MR 2244597
  • 10. Song-Ying Li, On the Dirichlet problem for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math., 8(2004), 87-106. MR 2128299 (2006d:32057)
  • 11. J. Matero, The Bieberbach-Rademacher problem for the Monge-Ampère operator, Manuscripta Math., 91(1996), 379-391. MR 1416719 (97i:35107)
  • 12. R. Osserman, On the inequality $ \triangle u\geq f(u)$, Pacific J. Math., 7(1957), 1641-1647. MR 0098239 (20:4701)
  • 13. P. Salani, Boundary blow-up problems for Hessian equations, Manuscripta Math., 96(1998), 281-294. MR 1638149 (99e:35071)
  • 14. N.S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math., 175(1995), 151-164. MR 1368245 (96m:35113)
  • 15. N.S. Trudinger, Weak solutions of Hessian equations, Comm. Partial Diff. Eqns., 22(1997), 1251-1261. MR 1466315 (99a:35077)
  • 16. N.S. Trudinger and Xu-Jia Wang, Hessian measure II, Annals Math., 150(1999), 597-604. MR 1726702 (2001f:35141)
  • 17. J. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana Univ. Math. J., 39(1990), 355-382. MR 1089043 (92h:35074)
  • 18. Ni Xiang and Xiao-Ping Yang, The complex Monge-Ampère equation with infinite Dirichlet boundary value, Nonlinear Analysis, to appear.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32A05, 35J60

Retrieve articles in all journals with MSC (2000): 32A05, 35J60


Additional Information

Ni Xiang
Affiliation: School of Science, Nanjing University of Science & Technology, Nanjing, People’s Republic of China 210094
Email: nixiang_810715@yahoo.com.cn

Xiao-Ping Yang
Affiliation: School of Science, Nanjing University of Science & Technology, Nanjing, People’s Republic of China 210094
Email: xpyang@mail.njust.edu.au

DOI: https://doi.org/10.1090/S0002-9939-08-09354-4
Keywords: Complex Hessian equation, infinite boundary value, $\Gamma$-subharmonic
Received by editor(s): March 21, 2007
Published electronically: February 18, 2008
Additional Notes: The first author was supported in part by the National Natural Science Foundation of Jiangsu Province #BK2006209.
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society