HYPONORMAL TOEPLITZ OPERATORS
AND ZEROS OF POLYNOMIALS

TAKAHIKO NAKAZI

(Communicated by Joseph A. Ball)

Abstract. The problem of hyponormality for Toeplitz operators with (trigonometric) polynomial symbols is studied. We give a necessary and sufficient condition using the zeros of the analytic polynomial induced by the Fourier coefficients of the symbol.

Let \(L^p \) be the Lebesgue space on the unit circle \(T \) and let \(H^p \) be the corresponding Hardy space for \(1 \leq p \leq \infty \). The Toeplitz operator \(T_\phi \) with symbol \(\phi \) in \(L^\infty \) is the operator on \(H^2 \) defined by \(T_\phi f = P(\phi f) \) for \(f \) in \(H^2 \), where \(P \) is the orthogonal projection from \(L^2 \) onto \(H^2 \). In this paper, we are interested in when \(T_\phi \) is hyponormal.

Two characterizations of the hyponormality of \(T_\phi \) are known as the following:

(I) Suppose \(\phi_1 \) and \(\phi_2 \) are functions in \(H^2 \) with \(\phi = \phi_1 + \overline{\phi}_2 \) in \(L^\infty \). Then \(T_\phi \) is hyponormal if and only if there exists a constant \(c \) and a function \(k \) in \(H^\infty \) with \(\|k\|_\infty \leq 1 \) such that \(\phi_2 = c + T_\phi \overline{k} \phi_1 \).

(II) \(T_\phi \) is hyponormal if and only if there exist two functions \(k \) and \(g \) in \(H^\infty \) such that \(\phi = k\overline{\phi} + g \) and \(\|k\|_\infty \leq 1 \).

The characterization (I) is due to Cowen \[1\]. Cowen \[1\] and Zhu \[6\] used this characterization. (II) is due to Nakazi-Takahashi \[4\] Lemma 1. It is easy to prove (II) if we use (I). Nakazi-Takahashi \[4\] and Hwang-Lee \[3\] used this one. Hwang-Lee \[3\] established an explicit and useful criterion using (II) when the symbol \(\phi \) is a trigonometric polynomial. Their criterion involves the zeros of an analytic polynomial induced by the Fourier coefficients of \(\phi \). On the other hand, Zhu \[6\] gave a characterization which is related to the coefficients of the analytic polynomial induced by the Fourier coefficients of \(\phi \), using (I) and a theorem of Schur \[5\]. In this paper, we give a necessary and sufficient condition which is related to the zeros of an analytic polynomial induced by the Fourier coefficient of \(\phi \), using (II) and the Carathéodory-Schur interpolation theorem (cf. \[3\]).
Theorem 1. Suppose \(\phi \) is a trigonometric polynomial such that
\[
\phi = z^\ell \prod_{j=1}^{t} (z - \alpha_j) \prod_{j=1}^{s} (z - \beta_j),
\]
where \(\ell \geq 1, \ |\alpha_j| < 1 \) and \(|\beta_j| \geq 1 \). When \(t = 0 \) or \(s = 0 \), we assume that
\[
\prod_{j=1}^{t} (z - \alpha_j) = 1 \quad \text{or} \quad \prod_{j=1}^{s} (1 - \beta_j) = 1.
\]
Let
\[
f = \prod_{j=1}^{t} \frac{z - \alpha_j}{1 - \alpha_j z} \quad \text{and} \quad h = \prod_{j=1}^{s} \frac{1 - \beta_j z}{z - \beta_j}.
\]
Then \(T_\phi \) is hyponormal if and only if \(2\ell \leq t + s \) and there exists a solution \(a_0, \ldots, a_{\ell-1} \) of the linear system of equations
\[
f^{(i)}(0) = \sum_{j=0}^{i} (i-1)(i-2) \cdots (i-j+1)a_j h^{(i-j)}(0) \quad (0 \leq i \leq \ell - 1)
\]
for which the associated lower triangular Toeplitz matrix
\[
T(a_0, \ldots, a_{\ell-1}) = \begin{bmatrix}
a_0 & \cdots & 0 \\
a_1 & a_0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{\ell-1} & a_{\ell-2} & \cdots & a_0
\end{bmatrix}
\]
has \(||T(a_0, \ldots, a_{\ell-1})|| \leq 1 \).

Proof. By the characterization (II), \(T_\phi \) is hyponormal if and only if there exists a function \(K \) in \(H^\infty \) with \(||K||_\infty \leq 1 \) and a function \(g \) in \(H^\infty \) such that \(\phi = K\phi + g \). Hence \(T_\phi \) is hyponormal if and only if \(2\ell \leq t + s \) by (1) of Corollary 5 in [4] and there exists a function \(K \) in \(H^\infty \) with \(||K||_\infty \leq 1 \) and a function \(g \) in \(H^\infty \) such that
\[
z^\ell \prod_{j=1}^{t} (z - \alpha_j) \prod_{j=1}^{s} (z - \beta_j) = K z^\ell \prod_{j=1}^{t} (\bar{z} - \bar{\alpha}_j) \prod_{j=1}^{s} (\bar{z} - \bar{\beta}_j) + g.
\]
The above equality can be written as follows:
\[
f = K z^{2\ell(t+s)} h + z^\ell G,
\]
where \(G = g / \prod_{j=1}^{t} (1 - \bar{\alpha}_j z) \prod_{j=1}^{s} (1 - \bar{\beta}_j z) \). Since \(z^{(t+s)-2\ell} (f - z^\ell G) = Kh \),
\[
z^{(t+s)-2\ell} (f - z^\ell G) \prod_{j=1}^{s} (z - \beta_j) = K \prod_{j=1}^{s} (1 - \bar{\beta}_j z).
\]
This implies that \(K \) is divisible in \(H^\infty \) by \(z^{(t+s)-2\ell} \) because \(|\beta_j| \leq 1 \). Hence, if \(k = z^{2\ell(t+s)} K \), then \(k \) belongs to \(H^\infty \) and \(f = kh + z^\ell G \). Hence \(T_\phi \) is hyponormal if and only if \(2\ell \leq t + s \) and there exists a function \(k \in H^\infty \) with \(||k||_\infty \leq 1 \) such that
\[
f^{(i)}(0) = \sum_{j=0}^{i} s C_j k^{(j)}(0) h^{(i-j)}(0) \quad (0 \leq i \leq \ell - 1),
\]
Let \(C_j = i!/j!(i-j)! \). Put \(k = \sum_{j=0}^{\infty} a_j z^j \). Then \(k^{(j)}(0) = j! a_j \) and so
\[
f^{(i)}(0) = \sum_{j=0}^{i} (i-1)(i-2) \cdots (i-j+1) a_j h^{(i-j)}(0)
\]
for \(0 \leq i \leq \ell - 1 \). Now the theorem follows from the Carathéodory-Schur interpolation theorem (cf. [2]).

In the characterization (II) of hyponormality, put \(\mathcal{E}(\phi) = \{k \in H^\infty : \phi = k\bar{\phi} + g, g \in H^\infty, \text{ and } ||k||_\infty \leq 1\}. \mathcal{E}(\phi) \) has been studied and it may contain more than two elements (see [5]). Hence the \(k \) in the proof of Theorem 1 may not be unique in general, and so \((a_j)_{j=0}^{\infty} \) may not be unique.

By a result in the previous paper [4 Corollary 5], if \(\{1/\beta_j\}_{j=1}^{s} \subseteq \{\alpha_j\}_{j=1}^{t} \) (see Theorem 1), then \(T_\phi \) is hyponormal. Here we give a necessary and sufficient condition for hyponormality of \(T_\phi \) in terms of a relation between \(\{\alpha_j\}_{j=1}^{t} \) and \(\{\beta_j\}_{j=1}^{s} \) when \(\ell = 1 \) or 2.

Corollary 1. Let \(\ell = 1 \) in Theorem 1. Then \(T_\phi \) is hyponormal if and only if
\[
\prod_{j=1}^{t} |\alpha_j| \times \prod_{j=1}^{s} |\beta_j| \leq 1.
\]
When \(t = 0 \) or \(s = 0 \), we assume
\[
\prod_{j=1}^{t} |\alpha_j| = 1 \quad \text{or} \quad \prod_{j=1}^{s} |\beta_j| = 1.
\]

Proof. By Theorem 1 \(T_\phi \) is hyponormal if and only if \(f(0) = a_0 h(0) \) and \(|a_0| \leq 1 \).

Corollary 2. Let \(\ell = 2 \) in Theorem 1. Then \(T_\phi \) is hyponormal if and only if there exist constants \(a_0, a_1 \) such that \(|a_1| \leq 1 - |a_0|^2 \) and
\[
\prod_{j=1}^{t} |\alpha_j| \times \prod_{j=1}^{s} |\beta_j| \leq 1
\]
\[
\sum_{k=1}^{t} \left\{ (1 - |\alpha_k|^2) \prod_{j \neq k} (-\alpha_j) \right\} = a_0 \sum_{k=1}^{t} \left(\frac{|\beta_k|^2 - 1}{|\beta_k|^2} \right) \prod_{j \neq k} \left(-\frac{1}{\beta_j} \right) + a_1 \prod_{j=1}^{s} \left(-\frac{1}{\beta_j} \right).
\]
If \(s = 0 \), then
\[
\sum_{k=1}^{t} \left\{ (1 - |\alpha_k|^2) \prod_{j \neq k} (-\alpha_j) \right\} = 1
\]
and if \(t = 0 \), then there exist constants \(a_0, a_1 \) such that \(|a_1| \leq 1 - |a_0|^2 \) and
\[
a_0 \sum_{k=1}^{s} \left(\frac{|\beta_k|^2 - 1}{|\beta_k|^2} \right) \prod_{j \neq k} \left(-\frac{1}{\beta_j} \right) + a_1 \prod_{j=1}^{s} \left(-\frac{1}{\beta_j} \right) = 0.
\]

Proof. By Theorem 1 \(T_\phi \) is hyponormal if and only if \(f(0) = a_0 h(0) \), \(f'(0) = a_0 h'(0) + a_1 h''(0) \), and \(|a_1| \leq 1 - |a_0|^2 \).

Corollary 3. Let \(s = 0 \) in Theorem 1. Then \(T_\phi \) is hyponormal if and only if \(f^{(i)}(0) = a_i (0 \leq i \leq \ell - 1) \) and \(\|T(a_0, a_1, \ldots, a_{\ell-1})\| \leq 1 \).
Proof. By Theorem \(1\), \(T_\phi\) is hyponormal if and only if \(f^{(i)}(0) = a_0\) for \(i = 0, 1, 2\) and \(|T(a_0, 0, 0)| = |a_0| \leq 1\). □

Corollary 4. Let \(t = 0\) in Theorem \(1\). Then \(T_\phi\) is hyponormal if and only if

\[
1 = a_0 h(0), \sum_{j=0}^{i} a_j h^{(i-j)}(0) = 0 \quad (1 \leq i \leq \ell - 1) \quad \text{and} \quad \|T(a_0, a_1, \ldots, a_{\ell-1})\| \leq 1.
\]

Our corollaries are new and different from Examples 6 and 7 in \([6]\). The author of \([6]\) proved them under some condition \(a_2 \neq 0\) in Example 6. Of course, his result is not for zeros of a polynomial.

ACKNOWLEDGMENT

The author would like to thank the referee for many comments which improved the original manuscript.

REFERENCES

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HOKKAIDO UNIVERSITY, SAPPORO 060-0810, JAPAN