Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An algebraic extension of the MacMahon Master Theorem


Authors: Pavel Etingof and Igor Pak
Journal: Proc. Amer. Math. Soc. 136 (2008), 2279-2288
MSC (2000): Primary 16S37; Secondary 05A30, 05E05, 81S05
DOI: https://doi.org/10.1090/S0002-9939-08-09017-5
Published electronically: March 13, 2008
MathSciNet review: 2390493
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new algebraic extension of the classical MacMahon Master Theorem. The basis of our extension is the Koszul duality for non-quadratic algebras defined by Berger. Combinatorial implications are also discussed.


References [Enhancements On Off] (What's this?)

  • [B] R. Berger, Koszulity for nonquadratic algebras, J. Algebra 239 (2001), 705-734. MR 1832913 (2002d:16034)
  • [CF] P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Mathematics, No. 85, Springer, Berlin, 1969; available electronically at http://www.mat.univie.ac.at/~slc/books/cartfoa.html. MR 0239978 (39:1332)
  • [DB] F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962. MR 0155371 (27:5305)
  • [FH1] D. Foata and G.-N. Han, A new proof of the Garoufalidis-Lê-Zeilberger quantum MacMahon master theorem, J. Algebra 307 (2007), no. 1, 424-431. MR 2278064 (2008b:05008)
  • [FH2] D. Foata and G.-N. Han, Specializations and extensions of the quantum MacMahon Master Theorem, Linear Algebra Appl. 423 (2007), no. 2-3, 445-455. MR 2312419 (2008c:05012)
  • [FZ] D. Foata and D. Zeilberger, Laguerre polynomials, weighted derangements, and positivity, SIAM J. Disc. Math. 1 (1988), no. 4, 425-433. MR 968850 (89m:05008)
  • [Fr] R. Fröberg, Koszul Algebras, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999, 337-350. MR 1767430 (2001i:16046)
  • [GLZ] S. Garoufalidis, T. Tq Lê and D. Zeilberger, The quantum MacMahon master theorem, Proc. Natl. Acad. Sci. USA 103 (2006), no. 38, 13928-13931. MR 2270337
  • [GJ] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley, New York, 1983. MR 702512 (84m:05002)
  • [HL] P. H. Hai and M. Lorenz, Koszul algebras and the quantum MacMahon master theorem, Bull. Lond. Math. Soc. 39 (2007), no. 4, 667-676. MR 2346948
  • [KP] M. Konvalinka and I. Pak, Non-commutative extensions of the MacMahon master theorem, Adv. Math. 216 (2007), no. 1, 29-61. MR 2353248
  • [Ma] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, The Clarendon Press, Oxford University Press, New York, 1995. MR 1354144 (96h:05207)
  • [MM] P. A. MacMahon, Combinatory Analysis, 2 vols., Cambridge University Press, 1915 and 1916; reprinted in one volume by Chelsea, New York, 1960. MR 0141605 (25:5003)
  • [PP] A. Polishchuk and L. Positselski, Quadratic Algebras, University Lecture Series, 37, Amer. Math. Soc., Providence, RI, 2005. MR 2177131 (2006f:16043)
  • [R] N. Roby, Séries de Poincaré des algèbres $ h$-extérieures (in French), Bull. Sci. Math. (2) 95 (1971), 3-14. MR 0282861 (44:95)
  • [S] R. P. Stanley, Enumerative Combinatorics, vols. 1, 2, Cambridge Studies in Advanced Mathematics, 49, 62, Cambridge University Press, Cambridge, UK, 1997, 1999. MR 1442260 (98a:05001), MR 1676282 (2000k:05026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16S37, 05A30, 05E05, 81S05

Retrieve articles in all journals with MSC (2000): 16S37, 05A30, 05E05, 81S05


Additional Information

Pavel Etingof
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: etingof@math.mit.edu

Igor Pak
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: pak@math.mit.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09017-5
Received by editor(s): August 1, 2006
Published electronically: March 13, 2008
Communicated by: Jim Haglund
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society