Packing dimension of the range of a Lévy process

Authors:
Davar Khoshnevisan and Yimin Xiao

Journal:
Proc. Amer. Math. Soc. **136** (2008), 2597-2607

MSC (2000):
Primary 60J30, 60G17, 28A80

Published electronically:
March 4, 2008

MathSciNet review:
2390532

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote a Lévy process in with exponent . Taylor (1986) proved that the packing dimension of the range is given by the index

We provide an alternative formulation of in terms of the Lévy exponent . Our formulation, as well as methods, are Fourier-analytic, and rely on the properties of the Cauchy transform. We show, through examples, some applications of our formula.

**[1]**T. W. Anderson,*The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities*, Proc. Amer. Math. Soc.**6**(1955), 170–176. MR**0069229**, 10.1090/S0002-9939-1955-0069229-1**[2]**Jean Bertoin,*Lévy processes*, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR**1406564****[3]**Jean Bertoin,*Subordinators: examples and applications*, Lectures on probability theory and statistics (Saint-Flour, 1997) Lecture Notes in Math., vol. 1717, Springer, Berlin, 1999, pp. 1–91. MR**1746300**, 10.1007/978-3-540-48115-7_1**[4]**R. M. Blumenthal and R. K. Getoor,*Sample functions of stochastic processes with stationary independent increments*, J. Math. Mech.**10**(1961), 493–516. MR**0123362****[5]**Salomon Bochner,*Harmonic analysis and the theory of probability*, University of California Press, Berkeley and Los Angeles, 1955. MR**0072370****[6]**Richard Durrett,*Probability: theory and examples*, 2nd ed., Duxbury Press, Belmont, CA, 1996. MR**1609153****[7]**Bert E. Fristedt and S. James Taylor,*The packing measure of a general subordinator*, Probab. Theory Related Fields**92**(1992), no. 4, 493–510. MR**1169016**, 10.1007/BF01274265**[8]**W. J. Hendricks,*A uniform lower bound for Hausdorff dimension for transient symmetric Lévy processes*, Ann. Probab.**11**(1983), no. 3, 589–592. MR**704545****[9]**J. P. Holmes, William N. Hudson, and J. David Mason,*Operator-stable laws: multiple exponents and elliptical symmetry*, Ann. Probab.**10**(1982), no. 3, 602–612. MR**659531****[10]**William N. Hudson and J. David Mason,*Operator-self-similar processes in a finite-dimensional space*, Trans. Amer. Math. Soc.**273**(1982), no. 1, 281–297. MR**664042**, 10.1090/S0002-9947-1982-0664042-7**[11]**Harry Kesten,*Hitting probabilities of single points for processes with stationary independent increments*, Memoirs of the American Mathematical Society, No. 93, American Mathematical Society, Providence, R.I., 1969. MR**0272059****[12]**Davar Khoshnevisan and Yimin Xiao,*Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes*, Proc. Amer. Math. Soc.**131**(2003), no. 8, 2611–2616. MR**1974662**, 10.1090/S0002-9939-02-06778-3**[13]**Davar Khoshnevisan, Yimin Xiao, and Yuquan Zhong,*Measuring the range of an additive Lévy process*, Ann. Probab.**31**(2003), no. 2, 1097–1141. MR**1964960**, 10.1214/aop/1048516547**[14]**Mark M. Meerschaert and Hans-Peter Scheffler,*Limit distributions for sums of independent random vectors*, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 2001. Heavy tails in theory and practice. MR**1840531****[15]**Mark M. Meerschaert and Yimin Xiao,*Dimension results for sample paths of operator stable Lévy processes*, Stochastic Process. Appl.**115**(2005), no. 1, 55–75. MR**2105369**, 10.1016/j.spa.2004.08.004**[16]**Steven Orey,*Polar sets for processes with stationary independent increments*, Markov Processes and Potential Theory (Proc. Sympos. Math. Res. Center, Madison, Wis., 1967) Wiley, New York, 1967, pp. 117–126. MR**0229305****[17]**William E. Pruitt,*The Hausdorff dimension of the range of a process with stationary independent increments*, J. Math. Mech.**19**(1969/1970), 371–378. MR**0247673****[18]**William E. Pruitt and S. James Taylor,*Packing and covering indices for a general Lévy process*, Ann. Probab.**24**(1996), no. 2, 971–986. MR**1404539**, 10.1214/aop/1039639373**[19]**W. E. Pruitt and S. J. Taylor,*Sample path properties of processes with stable components*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**12**(1969), 267–289. MR**0258126****[20]**Ken-iti Sato,*Lévy processes and infinitely divisible distributions*, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR**1739520****[21]**Michael Sharpe,*Operator-stable probability distributions on vector groups*, Trans. Amer. Math. Soc.**136**(1969), 51–65. MR**0238365**, 10.1090/S0002-9947-1969-0238365-3**[22]**Dennis Sullivan,*Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups*, Acta Math.**153**(1984), no. 3-4, 259–277. MR**766265**, 10.1007/BF02392379**[23]**S. James Taylor,*The use of packing measure in the analysis of random sets*, Stochastic processes and their applications (Nagoya, 1985) Lecture Notes in Math., vol. 1203, Springer, Berlin, 1986, pp. 214–222. MR**872112**, 10.1007/BFb0076883**[24]**Claude Tricot Jr.,*Two definitions of fractional dimension*, Math. Proc. Cambridge Philos. Soc.**91**(1982), no. 1, 57–74. MR**633256**, 10.1017/S0305004100059119**[25]**Yimin Xiao,*Random fractals and Markov processes*, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 261–338. MR**2112126**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
60J30,
60G17,
28A80

Retrieve articles in all journals with MSC (2000): 60J30, 60G17, 28A80

Additional Information

**Davar Khoshnevisan**

Affiliation:
Department of Mathematics, The University of Utah, 155 S. 1400 East, Salt Lake City, Utah 84112–0090

Email:
davar@math.utah.edu

**Yimin Xiao**

Affiliation:
Department of Statistics and Probability, A-413 Wells Hall, Michigan State University, East Lansing, Michigan 48824

Email:
xiao@stt.msu.edu

DOI:
https://doi.org/10.1090/S0002-9939-08-09163-6

Keywords:
L\'evy processes,
operator stable L\'evy processes,
packing dimension,
Hausdorff dimension.

Received by editor(s):
June 21, 2006

Received by editor(s) in revised form:
January 25, 2007, and March 1, 2007

Published electronically:
March 4, 2008

Additional Notes:
This research was partially supported by a grant from the National Science Foundation

Communicated by:
Richard C. Bradley

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.