Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Commensurability classification of a family of right-angled Coxeter groups


Authors: John Crisp and Luisa Paoluzzi
Journal: Proc. Amer. Math. Soc. 136 (2008), 2343-2349
MSC (2000): Primary 20F36
DOI: https://doi.org/10.1090/S0002-9939-08-09213-7
Published electronically: March 11, 2008
MathSciNet review: 2390500
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify the members of an infinite family of right-angled Coxeter groups up to abstract commensurability.


References [Enhancements On Off] (What's this?)

  • 1. P.-E. Caprace, ``Abstract'' homomorphisms of split Kac-Moody groups, Ph.D. thesis, Université Libre de Bruxelles, December 2005.
  • 2. J. Crisp, Automorphisms and abstract commensurators of $ 2$-dimensional Artin groups, Geometry and Topology 9 (2005) 1381-1441. MR 2174269 (2006g:20057)
  • 3. J.-F. Lafont, Diagram rigidity for geometric amalgamations of free groups, J. Pure Appl. Algebra 209 (2007) 771-780. MR 2298855
  • 4. B. Mühlherr, The isomorphism problem for Coxeter groups, in ``The Coxeter Legacy'', 1-15, Amer. Math. Soc., Providence, RI, 2006. MR 2209018 (2006k:20084)
  • 5. D. Radcliffe, Rigidity of graph products of groups, Algebr. Geom. Topol. 3 (2003) 1079-1088. MR 2012965 (2004h:20056)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20F36

Retrieve articles in all journals with MSC (2000): 20F36


Additional Information

John Crisp
Affiliation: I.M.B. (UMR 5584 du CNRS), Université de Bourgogne, B.P. 47 870, 21078 Dijon, France
Email: jcrisp@u-bourgogne.fr

Luisa Paoluzzi
Affiliation: I.M.B. (UMR 5584 du CNRS), Université de Bourgogne, B.P. 47 870, 21078 Dijon, France
Email: paoluzzi@u-bourgogne.fr

DOI: https://doi.org/10.1090/S0002-9939-08-09213-7
Keywords: Abstract commensurability, right-angled, Coxeter group
Received by editor(s): October 12, 2006
Received by editor(s) in revised form: April 20, 2007
Published electronically: March 11, 2008
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society