Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


The sub-supersolution method for weak solutions

Authors: Marcelo Montenegro and Augusto C. Ponce
Journal: Proc. Amer. Math. Soc. 136 (2008), 2429-2438
MSC (2000): Primary 35D05, 35J60
Published electronically: February 29, 2008
MathSciNet review: 2390510
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the method of sub and supersolutions in order to prove existence of $ L^1$-solutions of the equation $ -\Delta u = f(x,u)$ in $ \Omega$, where $ f$ is a Carathéodory function. The proof is based on Schauder's fixed point theorem.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35D05, 35J60

Retrieve articles in all journals with MSC (2000): 35D05, 35J60

Additional Information

Marcelo Montenegro
Affiliation: Departamento de Matemática, Universidade Estadual de Campinas, IMECC, Caixa Postal 6065, CEP 13083-970, Campinas, SP, Brasil

Augusto C. Ponce
Affiliation: Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Fédération Denis Poisson, Université François Rabelais 37200, Tours, France

PII: S 0002-9939(08)09231-9
Keywords: Method of sub-supersolutions, Schauder's fixed point theorem, semilinear elliptic problems, weak solutions
Received by editor(s): September 12, 2006
Published electronically: February 29, 2008
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2008 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia