Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The sub-supersolution method for weak solutions

Authors: Marcelo Montenegro and Augusto C. Ponce
Journal: Proc. Amer. Math. Soc. 136 (2008), 2429-2438
MSC (2000): Primary 35D05, 35J60
Published electronically: February 29, 2008
MathSciNet review: 2390510
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the method of sub and supersolutions in order to prove existence of $ L^1$-solutions of the equation $ -\Delta u = f(x,u)$ in $ \Omega$, where $ f$ is a Carathéodory function. The proof is based on Schauder's fixed point theorem.

References [Enhancements On Off] (What's this?)

  • 1. K. Akô, On the Dirichlet problem for quasi-linear elliptic differential equations of the second order. J. Math. Soc. Japan 13 (1961), 45-62. MR 0147758 (26:5272)
  • 2. H. Brezis, T. Cazenave, Y. Martel, and A. Ramiandrisoa, Blow up for $ u\sb t-\Delta u=g(u)$ revisited. Adv. Differential Equations 1 (1996), 73-90. MR 1357955 (96i:35063)
  • 3. H. Brezis, M. Marcus, and A. C. Ponce, Nonlinear elliptic equations with measures revisited. In: Mathematical Aspects of Nonlinear Dispersive Equations (J. Bourgain, C. Kenig, and S. Klainerman, eds.), Annals of Mathematics Studies, 163, Princeton University Press, Princeton, NJ, 2007. Part of the results were announced in a note by the same authors: A new concept of reduced measure for nonlinear elliptic equations, C. R. Acad. Sci. Paris, Ser. I 339 (2004), 169-174. MR 2078069 (2005b:35069)
  • 4. H. Brezis and L. Nirenberg, Nonlinear functional analysis. In preparation.
  • 5. H. Brezis and A. C. Ponce, Reduced measures on the boundary. J. Funct. Anal. 229 (2005), 95-120. MR 2180075 (2006k:35079)
  • 6. P. Clément and G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration. Rend. Istit. Mat. Univ. Trieste 19 (1987), 189-194. MR 988383 (90h:35110)
  • 7. E. N. Dancer and G. Sweers, On the existence of a maximal weak solution for a semilinear elliptic equation. Differential Integral Equations 2 (1989), 533-540. MR 996759 (90h:35049)
  • 8. J. Deuel and P. Hess, A criterion for the existence of solutions of non-linear elliptic boundary value problems. Proc. Roy. Soc. Edinburgh Sect. A 74A (1974/75), 49-54. MR 0440191 (55:13070)
  • 9. L. C. Evans, Partial differential equations. Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845 (99e:35001)
  • 10. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • 11. A. Gmira and L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations. Duke Math. J. 64 (1991), 271-324. MR 1136377 (93a:35053)
  • 12. M. Marcus. Nonlinear second order elliptic equations with measure data. To appear in Handbook of Differential Equations 2 (M. Chipot, ed.)
  • 13. L. Orsina and A. C. Ponce, Semilinear elliptic equations and systems with diffuse measures. In preparation.
  • 14. M. C. Palmeri, Entropy subsolutions and supersolutions for nonlinear elliptic equations in $ {L}^1$. Ricerche Mat. 53 (2004), 183-212. MR 2286838
  • 15. G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus. Séminaire de Mathématiques Supérieures, no. 16 (Été, 1965), Les Presses de l'Université de Montréal, Montréal, Québec, 1966. MR 0251373 (40:4603)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35D05, 35J60

Retrieve articles in all journals with MSC (2000): 35D05, 35J60

Additional Information

Marcelo Montenegro
Affiliation: Departamento de Matemática, Universidade Estadual de Campinas, IMECC, Caixa Postal 6065, CEP 13083-970, Campinas, SP, Brasil

Augusto C. Ponce
Affiliation: Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Fédération Denis Poisson, Université François Rabelais 37200, Tours, France

Keywords: Method of sub-supersolutions, Schauder's fixed point theorem, semilinear elliptic problems, weak solutions
Received by editor(s): September 12, 2006
Published electronically: February 29, 2008
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society