Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the cofiniteness of local cohomology modules


Authors: Kamal Bahmanpour and Reza Naghipour
Journal: Proc. Amer. Math. Soc. 136 (2008), 2359-2363
MSC (2000): Primary 13D45, 14B15, 13E05
DOI: https://doi.org/10.1090/S0002-9939-08-09260-5
Published electronically: March 4, 2008
MathSciNet review: 2390502
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that if $ I$ is an ideal of a Noetherian ring $ R$ and $ M$ is a finitely generated $ R$-module, then for any minimax submodule $ N$ of $ H^{t}_{I}(M)$ the $ R$-module $ {\rm Hom}_{R}(R/I,H_{I}^{t}(M)/N)$ is finitely generated, whenever the modules $ H_{I}^{0}(M),\, H_{I}^{1}(M),..., \,H_{I}^{t-1}(M)$ are minimax. As a consequence, it follows that the associated primes of $ H^{t}_{I}(M)/N$ are finite. This generalizes the main result of Brodmann and Lashgari (2000).


References [Enhancements On Off] (What's this?)

  • 1. M.P. Brodmann and A.L. Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc. 128(2000), 2851-2853. MR 1664309 (2000m:13028)
  • 2. M.P. Brodmann, Ch. Rotthaus and R.Y. Sharp, On annihilators and associated primes of local cohomology modules, J. Pure and Appl. Algebra 153(2000), 197-227. MR 1783166 (2002b:13027)
  • 3. M.P. Brodmann and R.Y. Sharp, Local cohomology; an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998. MR 1613627 (99h:13020)
  • 4. E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92(1984), 179-184. MR 754698 (85j:13016)
  • 5. A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math., 41, Springer-Verlag, Berlin-New York (1967). MR 0224620 (37:219)
  • 6. A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), North-Holland, Amsterdam, 1968. MR 0476737 (57:16294)
  • 7. R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9(1969/1970), 145-164. MR 0257096 (41:1750)
  • 8. M. Hellus, On the set of associated primes of a local cohomology module, J. Algebra 237(2001), 406-419. MR 1813886 (2001m:13023)
  • 9. C. Huneke, Problems on local cohomology. Free resolutions in commutative algebra and algebraic geometry, Res. Notes Math., 2, Jones and Bartlett, Boston, MA (1992), 93-108. MR 1165320 (93f:13010)
  • 10. C. Huneke and R.Y. Sharp, Bass numbers of local cohomology module, Trans. Amer. Soc. 339(1993), 765-779. MR 1124167 (93m:13008)
  • 11. M. Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra 252(2002), 161-166. MR 1922391 (2003h:13021)
  • 12. G. Lyubezink, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math. 113(1993), 41-55. MR 1223223 (94e:13032)
  • 13. G. Lyubezink, A partial survey of local cohomology. Local cohomology and its applications, Lecture Notes in Pure and Appl. Math., 226, Dekker, New York (2002), 121-154. MR 1888197 (2003b:14006)
  • 14. T. Marley, The associated primes of local cohomology modules over rings of small dimension, Manuscripta Math. 104(2001), 519-525. MR 1836111 (2002h:13027)
  • 15. L. Melkersson, Properties of cofinite modules and application to local cohomology, Math. Proc. Cambridge Philos. Soc. 125(1999), 417-423. MR 1656785 (99k:13024)
  • 16. L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285(2005), 649-668. MR 2125457 (2006i:13033)
  • 17. L.T. Nhan, On generalized regular sequences and the finiteness for associated primes of local cohomology modules, Comm. Algebra. 33(2005), 793-806. MR 2128412 (2006b:13040)
  • 18. A.K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett. 7(2000), 165-176. MR 1764314 (2001g:13039)
  • 19. T. Zink, Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring, Math. Nachr. 64(1974), 239-252. MR 0364223 (51:478)
  • 20. H. Zöschinger, Minimax modules, J. Algebra 102(1986), 1-32. MR 853228 (87m:13019)
  • 21. H. Zöschinger, Über die Maximalbedingung für radikalvolle Untermoduln, Hokkaido Math. J. 17(1988), 101-116. MR 928469 (89g:13008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13D45, 14B15, 13E05

Retrieve articles in all journals with MSC (2000): 13D45, 14B15, 13E05


Additional Information

Kamal Bahmanpour
Affiliation: Department of Mathematics, University of Tabriz, Tabriz, Iran – and – Department of Mathematics, Islamic Azad University-Ardebil Branch, P.O. Box 5614633167, Ardebil, Iran
Email: bahmanpour@tabrizu.ac.ir

Reza Naghipour
Affiliation: Department of Mathematics, University of Tabriz, Tabriz, Iran – and – School of Mathematics, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5746, Tehran, Iran
Email: naghipour@ipm.ir, naghipour@tabrizu.ac.ir

DOI: https://doi.org/10.1090/S0002-9939-08-09260-5
Keywords: Local cohomology, cofinite module, minimax module, associated primes.
Received by editor(s): February 27, 2007
Received by editor(s) in revised form: May 17, 2007
Published electronically: March 4, 2008
Additional Notes: The research of the second author has been in part supported by a grant from IPM (No. 85130042)
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society