COUNTING CUSPS OF SUBGROUPS OF $\text{PSL}_2(\mathcal{O}_K)$

KATHLEEN L. PETERSEN

Communicated by Ted Chinburg

Abstract. Let K be a number field with r real places and s complex places, and let \mathcal{O}_K be the ring of integers of K. The quotient $[\mathbb{H}^2]^r \times [\mathbb{H}^3]^s / \text{PSL}_2(\mathcal{O}_K)$ has h_K cusps, where h_K is the class number of K. We show that under the assumption of the generalized Riemann hypothesis that if K is not \mathbb{Q} or an imaginary quadratic field and if $i \not\in K$, then $\text{PSL}_2(\mathcal{O}_K)$ has infinitely many maximal subgroups with h_K cusps. A key element in the proof is a connection to Artin’s Primitive Root Conjecture.

1. Introduction

It is well known that the group of orientation preserving isometries of the hyperbolic plane $\text{Isom}^+(\mathbb{H}^2)$ is isomorphic to $\text{PSL}_2(\mathbb{R})$ and $\text{Isom}^+(\mathbb{H}^3) \cong \text{PSL}_2(\mathbb{C})$. It follows that $\text{PSL}_2(\mathbb{R})^r \times \text{PSL}_2(\mathbb{C})^s$ is isomorphic to the group of orientation preserving isometries of $H_{r,s} = [\mathbb{H}^2]^r \times [\mathbb{H}^3]^s$. If K is a number field with r real places and s complex places and \mathcal{O}_K is the ring of integers of K, then $\text{PSL}_2(\mathcal{O}_K)$ embeds discretely in $\text{PSL}_2(\mathbb{R})^r \times \text{PSL}_2(\mathbb{C})^s$ via the map

$$\pm \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mapsto \prod_{\sigma} \pm \begin{pmatrix} \sigma(\alpha) & \sigma(\beta) \\ \sigma(\gamma) & \sigma(\delta) \end{pmatrix}$$

where the product is taken over all infinite places, σ of K. The quotient $M_K = H_{r,s}/\text{PSL}_2(\mathcal{O}_K)$ is a finite volume $(2r + 3s)$-dimensional orbifold equipped with a metric inherited from $H_{r,s}$. This orbifold has h_K cusps where h_K is the class number of K. If Γ is a finite index subgroup of $\text{PSL}_2(\mathcal{O}_K)$, then we let $M_\Gamma = H_{r,s}/\Gamma$. If M_Γ has n cusps, we say that Γ is n-cusped.

The orbifolds M_K have been the focus of much study. The most classical example is $M_\mathbb{Q}$, the quotient of \mathbb{H}^2 by the modular group, $\text{PSL}_2(\mathbb{Z})$. It is a hyperbolic 2-orbifold with a single cusp, and is the prototype non-compact arithmetic hyperbolic 2-orbifold. In fact, non-compact arithmetic hyperbolic 2-orbifolds are precisely those hyperbolic 2-orbifolds that are commensurable with $M_\mathbb{Q}$. (Two orbifolds are commensurable if they share a common finite sheeted cover.) Given an imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$ with a ring of integers \mathcal{O}_d, the groups $\text{PSL}_2(\mathcal{O}_d)$ are the Bianchi groups, and the corresponding quotients are hyperbolic 3-orbifolds. As in the case of the modular group, the class of all non-compact arithmetic hyperbolic 3-orbifolds consists of those orbifolds commensurable with a quotient of \mathbb{H}^3 by a
Bianchi group. When K is totally real, $\text{PSL}_2(\mathcal{O}_K)$ is called the *Hilbert modular group* of K. If K is a real quadratic field, the quotient $[\mathbb{H}^2]/\text{PSL}_2(\mathcal{O}_K)$ is a 4-dimensional orbifold, called a *Hilbert modular surface*.

Our result is the following.

Theorem 1.1. Let K be a number field other than \mathbb{Q} or an imaginary quadratic field and, in addition, assume that $i \notin K$. Assuming the Generalized Riemann Hypothesis (GRH), there are infinitely many maximal h_K-cusped subgroups of $\text{PSL}_2(\mathcal{O}_K)$, where h_K is the class number of K.

We show that $\text{PSL}_2(\mathcal{O}_K)$ has infinitely many maximal h_K-cusped subgroups if there are infinitely many primes \mathcal{P} in \mathcal{O}_K such that $N_{K/\mathbb{Q}}(\mathcal{P}) \equiv 3 \mod 4$ and $|\mathcal{O}_K^* \mod \mathcal{P}| = |(\mathcal{O}_K/\mathcal{P})^*|$. The GRH is used to prove that there are infinitely many such primes.

The groups $\text{PSL}_2(\mathcal{O}_K)$ have been studied extensively, especially in the context of their normal subgroups. For a non-zero ideal $\mathcal{J} \subset \mathcal{O}_K$, the principal congruence subgroup of level \mathcal{J} is $\Gamma(\mathcal{J}) = \{ A \in \text{PSL}_2(\mathcal{O}_K) : A \equiv I \mod \mathcal{J} \}$. A (finite index) subgroup of $\text{PSL}_2(\mathcal{O}_K)$ is called a congruence subgroup if it contains a principal congruence subgroup. We say that $\text{PSL}_2(\mathcal{O}_K)$ has the congruence subgroup property (CSP) if “almost all” finite index subgroups are congruence subgroups. Precisely, define $\breve{\mathcal{G}}_K$ and $\overline{\mathcal{G}}_K$ as the profinite and congruence completions of $\text{PSL}_2(\mathcal{O}_K)$.

There is an exact sequence

$$\{1\} \rightarrow C_K \rightarrow \breve{\mathcal{G}}_K \rightarrow \overline{\mathcal{G}}_K \rightarrow \{1\},$$

where C_K is called the congruence kernel and measures the prevalence of non-congruence subgroups. Serre [11] proved that C_K is infinite when $K = \mathbb{Q}$ or an imaginary quadratic field. Otherwise, C_K is trivial if K contains a real place, and is isomorphic to the finite cyclic group containing the roots of unity of K if K is totally imaginary.

Rhode [8] proved that for every positive n, there are at least two conjugacy classes of one-cusped subgroups of index n in the modular group. Later, Petersson [9] proved that there are only finitely many one-cusped congruence subgroups of the modular group, and that the indices of such groups are the divisors of $55440 = 11 \cdot 7 \cdot 5 \cdot 3^2 \cdot 2^4$. The commutator subgroup of $\text{PSL}_2(\mathbb{Z})$, a subgroup of index 6, is a torsion-free one-cusped congruence subgroup containing $\Gamma(6)$.

Famously, the class number of $\mathbb{Q}(\sqrt{-d})$ is one precisely when $d = 1, 2, 3, 7, 11, 19, 43, 67, \text{or } 163$. These values of d are the only values for which the Bianchi group $\text{PSL}_2(\mathcal{O}_d)$ has one cusp, and consequently such that $\text{PSL}_2(\mathcal{O}_d)$ can contain a one-cusped subgroup. (In contrast, it is a famous conjecture that there are infinitely many real quadratic fields, K, with class number one. If this is true, there are infinitely many quotients $[\mathbb{H}^2]/\text{PSL}_2(\mathcal{O}_K)$ with one cusp.) Two notable one-cusped congruence subgroups in $\text{PSL}_2(\mathcal{O}_3)$ are associated to the figure-eight knot and its sister. The fundamental group of the complement of the figure-eight knot in S^3 injects as an index 12 subgroup containing $\Gamma(4)$ (see [2]). The fundamental group of the sister of the figure-eight knot complement, a knot in the lens space $L(5,1)$, injects as an index 12 subgroup containing $\Gamma(2)$ (see [1]). Reid [10] has shown that the figure-eight knot complement is the only arithmetic knot complement in S^3.

If $d = 2, 7, 11, 19, 43, 67, \text{or } 163$ there are infinitely many maximal one-cusped subgroups of $\text{PSL}_2(\mathcal{O}_d)$, as there is a surjection onto \mathbb{Z} with a parabolic element generating the image. If $d = 1$ or 3 there are infinitely many one-cusped subgroups.
(The fundamental groups of cyclic covers of the figure-eight knot complement all have one cusp.) In contrast, it is shown in [7] that there are only finitely many maximal one-cusped congruence subgroups of the Bianchi groups, and that if \(d = 11, 19, 43, 67, \) or 163 there are only finitely many one-cusped congruence subgroups in \(\text{PSL}_2(\mathcal{O}_d) \). Therefore, we see that especially when the class number is one, Theorem 1.1 further demonstrates the dichotomy between \(\mathbb{Q} \), imaginary quadratic number fields, and other number fields.

There are many examples of one-cusped hyperbolic 2- and 3-manifolds, for example, hyperbolic knot complements in \(\mathbb{P}^3 \). Theorem 1.1 demonstrates the dichotomy between \(\mathbb{Q} \), imaginary quadratic number fields, and other number fields.

Additionally, let \(\Phi_\mathcal{O} \) be the modulo \(\mathcal{O} \) map, followed by the isomorphism from \(\mathcal{O}_K / \mathcal{P} \) to \(\mathbb{F}_q \).

Additionally, let \(\Phi_\mathcal{P} \) be the modulo \(\mathcal{P} \) map, followed by the identification of \(\mathcal{O}_K / \mathcal{P} \) with \(\mathbb{F}_q \) as above:

\[
\Phi_\mathcal{P} : \text{PSL}_2(\mathcal{O}_K) \rightarrow \text{PSL}_2(\mathbb{F}_q).
\]

Notice that \(0 \notin \Phi_\mathcal{P}(\mathcal{O}_K^\times) \), so we can think of \(\Phi_\mathcal{P} : \mathcal{O}_K^\times \rightarrow \mathbb{F}_q^\times \) where \(\mathbb{F}_q^\times \) is the group of non-zero elements of \(\mathbb{F}_q \).

2. Proof

Before we proceed, we will review some information about peripheral subgroups and cusps. Recall that \(\pm A \in \text{PSL}_2(\mathbb{C}) \) is parabolic if \(\pm A \neq \pm I \) and \(|\text{trace} \ A| = 2 \). Let \(\Gamma \) be a finite index subgroup of \(\text{PSL}_2(\mathcal{O}_K) \). We define \(\mathcal{T} \in \mathbb{C} \cup \infty \) to be a cusp of \(\Gamma \) if \(\mathcal{T} \) is a parabolic fixed point of \(\Gamma \) or if there is a parabolic element \(A \in \Gamma \) such that \(A \cdot \mathcal{T} = \mathcal{T} \) where the action is by linear fractional transformations. For any such \(\mathcal{T} \), we define the corresponding peripheral subgroup as

\[
\text{Stab}_{\mathcal{T}}(\Gamma) = \{ A \in \Gamma : A \cdot \mathcal{T} = \mathcal{T} \}.
\]

Two cusps are equivalent in \(H_{r,s}/\Gamma \) if they are in the same \(\Gamma \) orbit under this action. Each equivalence class corresponds to a conjugacy class of maximal peripheral subgroups of \(\Gamma \) and to a cusp of \(\mathcal{M}_\Gamma \), a finite volume topological end. The orbifold \(\mathcal{M}_K \) has \(h_K \) cusps where \(h_K \) is the class number of \(K \), and hence \(\text{PSL}_2(\mathcal{O}_K) \) has \(h_K \) equivalence classes of cusps. The cusps of \(\text{PSL}_2(\mathcal{O}_K) \) correspond to elements of \(\mathcal{K} \cup \infty \). The equivalence classes of cusps correspond to fractional ideals of \(\mathcal{O}_K \) and with elements of \(\mathbb{P} K^1 \). If \(\mathcal{T} \in \mathcal{K} \) and \(\mathcal{T} = \tau_1 / \tau_2 \) as a reduced fraction, then \(\mathcal{T} \) also corresponds to the fractional ideal generated by \(\tau_1 \) and \(\tau_2^{-1} \) and the element \((\tau_1 : \tau_2) \in \mathbb{P} K^1 \) (see [13]).

For any \(\mathcal{T} = (t_1 : t_2) \) in \(\mathbb{P} \mathcal{F}_q \), we define

\[
\text{Stab}_{\mathcal{T}}(\text{PSL}_2(\mathcal{F}_q)) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : \frac{at_1 + bt_2}{ct_1 + dt_2} = \frac{t_1}{t_2} \right\}.
\]

For a non-zero prime \(\mathcal{P} \) in \(\mathcal{O}_K \) with \(q = N_{K/q}(\mathcal{P}) \), let \(\phi_\mathcal{P} \) be the modulo \(\mathcal{P} \) map, followed by the isomorphism from \(\mathcal{O}_K / \mathcal{P} \) to \(\mathbb{F}_q \):

\[
\phi_\mathcal{P} : \mathcal{O}_K / \mathcal{P} \rightarrow \mathbb{F}_q.
\]

Additionally, let \(\Phi_\mathcal{P} \) be the modulo \(\mathcal{P} \) map, followed by the identification of \(\mathcal{O}_K / \mathcal{P} \) with \(\mathbb{F}_q \) as above:

\[
\Phi_\mathcal{P} : \text{PSL}_2(\mathcal{O}_K) \rightarrow \text{PSL}_2(\mathbb{F}_q).
\]

Notice that \(0 \notin \Phi_\mathcal{P}(\mathcal{O}_K^\times) \), so we can think of \(\Phi_\mathcal{P} : \mathcal{O}_K^\times \rightarrow \mathbb{F}_q^\times \) where \(\mathbb{F}_q^\times \) is the group of non-zero elements of \(\mathbb{F}_q \).
2.1. Cusps and units. Let \mathcal{P} be a non-zero prime in \mathcal{O}_K of odd norm, q. The groups $\text{PSL}_2(F_q)$ always contain a maximal subgroup, D_{q+1}, isomorphic to the dihedral group of order $q + 1$ (see [12]). Let

$$\Gamma_{\mathcal{P}} = \Phi_{\mathcal{P}}^{-1}(D_{q+1}).$$

In this section we will prove

Proposition 2.1. Let K be a number field, let \mathcal{P} be a prime in \mathcal{O}_K with $q = N_{K/Q}(\mathcal{P})$ and set $l = [F_q^\times : \phi_{\mathcal{P}}(O_K^\times)]$. There is an $M > 2$ such that if $q > M$ and

(i) if $q \equiv 3 \mod 4$, then $\Gamma_{\mathcal{P}}$ has $h_K l$ cusps; otherwise

(ii) if $q \equiv 1 \mod 4$, then $\Gamma_{\mathcal{P}}$ has either $2h_K l$ or $h_K l$ cusps depending on whether or not D_{q+1} contains a non-identity element of the form $\pm \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right)$.

This reduces the proof of Theorem [11] to understanding the distribution of the indices $[F_q^\times : \phi_{\mathcal{P}}(O_K^\times)]$ over primes \mathcal{P} in \mathcal{O}_K. This will be addressed in the next section. Assuming the following lemma, we will now complete the proof of Proposition 2.1

Lemma 2.2. With the notation as above, there is an $M > 2$ such that if $q > M$, then for any cusp T of $\text{PSL}_2(\mathcal{O}_K)$,

$$[\text{Stab}_T(\text{PSL}_2(\mathcal{O}_K)) : \text{Stab}_T(\Gamma(\mathcal{P}))] = q(q-1)/2l.$$

Lemma 2.2 shows that if $q > M$, then all cusps of $M_{\Gamma(\mathcal{P})}$ cover the corresponding cusp of M_K with the same degree. Since $\Gamma(\mathcal{P})$ is a normal subgroup of $\text{PSL}_2(\mathcal{O}_K)$, the number of cusps of $M_{\Gamma(\mathcal{P})}$ covering a single cusp of M_K is

$$\frac{[\text{PSL}_2(\mathcal{O}_K) : \Gamma(\mathcal{P})]}{[\text{Stab}_\infty(\text{PSL}_2(\mathcal{O}_K)) : \text{Stab}_\infty(\Gamma(\mathcal{P}))]} = \frac{\frac{1}{2}q(q-1)}{\frac{1}{2}q(q-1)/l} = l(q+1).$$

Therefore since $\text{PSL}_2(\mathcal{O}_K)$ has $h_K l$ cusps, $\Gamma(\mathcal{P})$ has $h_K l(q+1)$ cusps.

First, assume that \mathcal{P} is as above and additionally that $q \equiv 3 \mod 4$. Since

$$|\text{Stab}_\infty(\text{PSL}_2(F_q))| = \frac{1}{2}q(q-1)$$

and $q \equiv 3 \mod 4$, $\gcd(q(q-1), 2q + 1) = 1$ and we conclude that

$$\text{Stab}_\infty(\text{PSL}_2(F_q)) \cap D_{q+1} = \{id\}.$$

As a result, for any cusp T of $\Gamma_{\mathcal{P}}$, $\text{Stab}_T(\Gamma_{\mathcal{P}}) = \text{Stab}_T(\Gamma(\mathcal{P}))$. Therefore, each cusp of $\Gamma(\mathcal{P})$ covers the corresponding cusp of $\Gamma_{\mathcal{P}}$ with degree one. Since $|\Gamma_{\mathcal{P}} : \Gamma(\mathcal{P})| = q + 1$, the cusp at ∞, and hence T, is covered by exactly $q + 1$ cusps of $\Gamma(\mathcal{P})$. Therefore $\Gamma_{\mathcal{P}}$ has $h_K l$ cusps.

If $q \equiv 1 \mod 4$, then $\gcd(q(q-1), 2q + 1) = 2$ and therefore

$$|\text{Stab}_\infty(\text{PSL}_2(F_q)) \cap D_{q+1}| = 1 \text{ or } 2.$$

If it is the former, then by the above argument $\Gamma_{\mathcal{P}}$ has $h_K l$ cusps. The latter case occurs precisely when a non-trivial element of the form

$$\pm \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right)$$

is in D_{q+1}. After conjugation we conclude that for each cusp T of $\Gamma_{\mathcal{P}}$, $|\text{Stab}_T(\Gamma_{\mathcal{P}})| = 2|\text{Stab}_T(\Gamma(\mathcal{P}))|$. Therefore each cusp of $\Gamma(\mathcal{P})$ covers the corresponding cusp of $\Gamma_{\mathcal{P}}$ with degree two and hence $\Gamma_{\mathcal{P}}$ has $2h_K l$ cusps. This proves Proposition 2.1.
Proof of Lemma 2.2. Let \(M > 2 \) be such that if \(q > M \), then for any cusp \(T \) of \(\text{PSL}_2(O_K) \) the parabolic elements in the stabilizer of \(T \) generate a subgroup of order \(q \) modulo \(\mathcal{P} \). Since there are only finitely many equivalence classes of cusps, and all stabilizers in each equivalence class are conjugate, such an \(M \) exists. First, we will prove the lemma for \(T = \infty \). Notice that \(\text{Stab}_\infty(\text{PSL}_2(\mathbb{F}_q)) \) is generated by elements of the form

\[
\pm \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \quad \text{and} \quad \pm \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}
\]

where \(a \in \mathbb{F}_q^\times \) and \(b \in \mathbb{F}_q \). Hence \(|\text{Stab}_\infty(\text{PSL}_2(\mathbb{F}_q))| = q(q-1)/2 \). An element of the second type always has a preimage in \(\text{Stab}_\infty(\text{PSL}_2(O_K)) \), as there is always a \(\beta \in O_K \) such that \(\phi_T(\beta) = b \). An element of the first type has a preimage in \(\text{Stab}_\infty(\text{PSL}_2(O_K)) \) precisely when there is an \(\alpha \in O_K^\times \) mapping to a modulo \(\mathcal{P} \). By hypothesis, \([\mathbb{F}_q^\times : \phi_T(O_K^\times)] = l \) so \((q-1)/l \) of the elements in \(\mathbb{F}_q^\times \) have preimages in \(O_K^\times \). As a result, \((q-1)/2l \) elements of the first type have preimages in \(\text{Stab}_\infty(\text{PSL}_2(O_K)) \). We conclude that \(q(q-1)/2l \) elements of \(\text{Stab}_\infty(\text{PSL}_2(\mathbb{F}_q)) \) have preimages in \(\text{Stab}_\infty(\text{PSL}_2(O_K)) \), establishing that \(|\text{Stab}_\infty(\text{PSL}_2(O_K)) : \text{Stab}_\infty(\Gamma(\mathcal{P}))| = q(q-1)/2l \).

Now we will show the result for \(T \neq \infty \). Let \((\tau_1 : \tau_2) \) be a representative for \(T \) in \(\mathbb{P}^1 \). We will use \(T \) to denote the fractional ideal generated by \(\tau_1 \) and \(\tau_2^{-1} \) as well. There is an \(\nu \in O_K \) such that \(T^{-1} = \nu^{-1}J \) for some ideal \(J \in O_K \). One can conjugate \((\tau_1 : \tau_2) \) to \(\infty \) via a matrix of the form

\[
\begin{pmatrix} \tau_1 & \tau_1' \\ \tau_2 & \tau_2' \end{pmatrix}
\]

where \(\tau_1', \tau_2' \in T^{-1} \). Therefore (see [13]) \(\text{Stab}_T(\text{PSL}_2(O_K)) \) is conjugate in \(\text{PSL}_2(K) \) to \(\text{Stab}_\infty(\text{PSL}_2(O_K) \oplus T^{-2}) \), which is

\[
\left\{ \pm \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \in \text{PSL}_2(K) : \alpha, \delta \in O_K, \alpha \delta = 1, \beta \in T^{-2} \right\}.
\]

Let \(G(\mathcal{P}) \) be the image of \(\Gamma(\mathcal{P}) \) under this conjugation. Since \(q > M \), \(\text{Stab}_\infty(\text{PSL}_2(O_K) \oplus T^{-2}) \) surjects the parabolic subgroup of \(\text{Stab}_\infty(\text{PSL}_2(\mathbb{F}_q)) \) in the quotient by \(G(\mathcal{P}) \). As in the \(T = \infty \) case,

\[
\left\{ \pm \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : a \in \mathbb{F}_q^\times \right\}
\]

pulls back to an order \((q-1)/2l \) subgroup of \(\text{Stab}_\infty(\text{PSL}_2(O_K) \oplus T^{-2}) \). We conclude that \(q(q-1)/2l \) of the elements in \(\text{Stab}_\infty(\text{PSL}_2(\mathbb{F}_q)) \) pull back to elements in \(\text{Stab}_\infty(\text{PSL}_2(O_K) \oplus T^{-2}) \), implying that \(|\text{Stab}_T(\text{PSL}_2(O_K)) : \text{Stab}_T(\Gamma(\mathcal{P}))| = q(q-1)/2l \). \(\square \)

2.2. Artin’s Primitive Root Conjecture. To prove Theorem 1.1 it suffices to prove the following lemma.

Lemma 2.3. Let \(K \) be a number field other than \(\mathbb{Q} \) or an imaginary quadratic field, and, in addition, assume that \(i \not\in K \). Assuming the GRH, there are infinitely many primes \(\mathcal{P} \) in \(O_K \) with \(q = N_K/\mathcal{P} \equiv 3 \mod 4 \) such that \(O_K^\times \) surjects onto \(\mathbb{F}_q^\times \) under the modulo \(\mathcal{P} \) map, i.e., such that \([\mathbb{F}_q^\times : \phi_\mathcal{P}(O_K^\times)] = 1 \).

Together with Proposition 2.1 this proves Theorem 1.1. The generalized Riemann hypothesis assumed is as follows, as required in [3].
Assumption. For all square-free \(n > 0 \) the Dedekind zeta function of \(L_{n,1} \) satisfies the generalized Riemann hypothesis, where \(L_{n,1} \) is the field obtained by adjoining to \(K \) the \(q_l(n) \)th roots of elements in \(\mathcal{O}_K^\times \). We define \(q_l(n) \) as follows:

\[
q_l(n) = \prod_{r|n} q_l(r),
\]

where the product is taken over all primes \(r \) dividing \(n \) and \(q_l(r) \) is the smallest power of \(r \) not dividing \(l \).

The condition that we require in Lemma 2.3 is closely related to Artin’s Primitive Root Conjecture, which we will now state.

Conjecture 2.4 (Artin). Let \(b \) be an integer other than \(-1\) or a square. There are infinitely many primes, \(p \), such that \(b \) generates the multiplicative group modulo \(p \), i.e. such that \([\mathbb{F}_p^\times : \phi_p(b)] = 1 \).

Hooley [3] proved the above conjecture under the assumption of the generalized Riemann hypothesis. Weinberger [14] generalized Hooley’s conditional proof to the number field setting, and later Lenstra [5] refined this work. Unconditionally, if \(K \) is Galois with unit rank greater than \(3 \), techniques of Murty and Harper [2] imply that there are infinitely many primes \(\mathcal{P} \) such that \(\mathcal{O}_K^\times \) surjects the multiplicative group modulo \(\mathcal{P} \). Therefore we have the following, unconditionally.

Theorem 2.5. If \(K \) is Galois with unit rank greater than \(3 \), there are infinitely many maximal subgroups of \(\text{PSL}_2(\mathcal{O}_K) \) with either \(h_K \) or \(2h_K \) cusps.

We will make use of [5], Theorem 3.1. First, we establish some notation. If \(F \) is a Galois extension of \(K \), recall that the Artin symbol \((\mathcal{P}, F/K) \) denotes the set of \(\sigma \in \text{Gal}(F/K) \) for which there is a prime \(\mathcal{Q} \) in \(F \) lying over \(\mathcal{P} \) such that \(\sigma(\mathcal{Q}) = \mathcal{Q} \) and \(\sigma(a) \equiv a^q \mod \mathcal{Q} \) where \(q = N_{K/\mathcal{Q}}(\mathcal{P}) \). Following [5], for \(F \) a Galois extension of \(K, C \) a subset of \(\text{Gal}(F/K) \), \(W \) a finitely generated subgroup of \(K^\times \), and \(l \) a positive integer, let \(M(K, F, C, W, l) \) denote those primes \(\mathcal{P} \) of \(K \) which satisfy \((\mathcal{P}, F/K) \subset C, \text{ord}_\mathcal{P}(w) = 0 \) for all \(w \in W \), and such that \([\mathbb{F}_q^\times : \phi_\mathcal{P}(\mathcal{O}_K^\times)] \) is divisible by \(l \). Let \(\mu \) be the Möbius function

\[
\mu(n) = \begin{cases}
0 & \text{if } n \text{ has one or more repeated prime divisors}, \\
1 & \text{if } n = 1, \\
(-1)^k & \text{if } n \text{ is a product of } k \text{ distinct primes},
\end{cases}
\]

and let \(c(n, l, C) = |C \cap \text{Gal}(F/(F \cap L_{n,l}))| \). Define

\[
D(K, F, C, W, l) = \sum_n \frac{\mu(n)c(n, l, C)}{|F : L_{n,l} : K|},
\]

where \(L_{n,l} \) is the field obtained by adjoining to \(K \) the \(q_l(n) \)th roots of elements in \(W \). Assuming the GRH, it is shown in [5] that \(M(K, F, C, W, l) \) has a natural density equal to \(D(K, F, C, W, l) \).

Proof of Lemma 2.3. The set \(M(K, K(i), \{\sigma\}, \mathcal{O}_K^\times, 1) \) is the set of unramified primes \(\mathcal{P} \) with \(q = N_{K/\mathcal{Q}}(\mathcal{P}) \equiv 3 \mod 4 \) such that \([\mathbb{F}_q^\times : \phi_\mathcal{P}(\mathcal{O}_K^\times)] = 1 \). Since \(i \notin K \), the stipulation that \((\mathcal{P}, K(i)/K) = \{\sigma\} \) corresponds to the norm being congruent to \(3 \mod 4 \). The stipulation that \(l = 1 \) is the condition that \([\mathbb{F}_q^\times : \phi_\mathcal{P}(\mathcal{O}_K^\times)] = 1 \).
It follows from the conditions in [5] that $D(K, K(i), \{\sigma\}, \mathcal{O}_K^\times, 1)$ is positive when K is a number field other than \mathbb{Q} or an imaginary quadratic number field, $i \not\in K$, and σ is complex conjugation. In fact, if r is the rank of \mathcal{O}_K^\times,

$$D(K, K(i), \{\sigma\}, \mathcal{O}_K^\times, 1) = \left(1 - \frac{1}{2^r}\right) \sum_{n} \frac{\mu(n)}{[L_{n,1} : K]}$$

$$= \left(1 - \frac{1}{2^r}\right) D(K, K, \{\text{id}\}, \mathcal{O}_K^\times, 1),$$

where $D(K, K, \{\text{id}\}, \mathcal{O}_K^\times, 1)$ is the previous density without the congruence condition.

\[\square\]

Acknowledgements

This paper is an extension of part of the author’s doctoral thesis [6]. The author would like to thank her advisor, Alan Reid, for his guidance and support.

References

Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada

E-mail address: petersen@math.queensu.ca