Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Tauberian type theorem for operators with interpolation spectrum for Hölder classes

Authors: C. Agrafeuil and K. Kellay
Journal: Proc. Amer. Math. Soc. 136 (2008), 2477-2482
MSC (2000): Primary 30H05; Secondary 30D55, 47A15.
Published electronically: March 11, 2008
MathSciNet review: 2390516
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider an invertible operator $ T$ on a Banach space $ X$ whose spectrum is an interpolating set for Hölder classes. We show that if $ \Vert T^{n}\Vert=O(n^p)$, $ p\geq1$, $ \Vert T^{-n}\Vert=O(w_n)$ with $ n^q=o(w_n)$ $ \forall q\in\mathbb{N}$ and $ \sum_n 1/(n^{1-\alpha} (\log w_{n})^{1+\alpha})=+\infty$, then $ \Vert T^{-n}\Vert=O(n^{p+s})$ for all $ s > \tfrac{1}{2}$, assuming that $ (w_n)_{n\geq 1}$ satisfies suitable regularity conditions. When $ X$ is a Hilbert space and $ p=0$ (i.e. $ T$ is a contraction), we show that under the same assumptions, $ T$ is unitary and this is sharp.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30H05, 30D55, 47A15.

Retrieve articles in all journals with MSC (2000): 30H05, 30D55, 47A15.

Additional Information

C. Agrafeuil
Affiliation: Université Aix Marseille III, Bat Henri Poincaré Cours A, 13397 Marseille cedex 20, France
Address at time of publication: 164, rue d’Alésia, 75014 Paris, France

K. Kellay
Affiliation: LATP-CMI, Université Aix Marseille I, 39 rue F. Jolio Curie, 13347 Marseille cedex 13, France

Keywords: Interpolating set, H\"older classes, growth of the norms
Received by editor(s): February 26, 2007
Published electronically: March 11, 2008
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society