Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite time singularities for a class of generalized surface quasi-geostrophic equations


Authors: Hongjie Dong and Dong Li
Journal: Proc. Amer. Math. Soc. 136 (2008), 2555-2563
MSC (2000): Primary 35Q35, 82C70
DOI: https://doi.org/10.1090/S0002-9939-08-09328-3
Published electronically: February 21, 2008
MathSciNet review: 2390526
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We propose and study a class of generalized surface quasi-geostrophic equations. We show that in the inviscid case certain radial solutions develop gradient blow-up in finite time. In the critical dissipative case, the equations are globally well-posed with arbitrary $ H^1$ initial data.


References [Enhancements On Off] (What's this?)

  • 1. Balodis, P., Córdoba, A., Inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations, Adv. Math. 214 (2007) no. 1, 1-39.
  • 2. Bertozzi, A.L., Majda, A.J., Vorticity and Incompressible Flow, Cambridge Univ. Press, Cambridge, UK (2002). MR 1867882 (2003a:76002)
  • 3. Beale, J.T., Kato, T., and Majda, A., Remarks on the breakdown of smooth solutions for the $ 3$-D Euler equations, Comm. Math. Phys. 94 (1984), no. 1, 61-66. MR 763762 (85j:35154)
  • 4. Caffarelli, L., Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, preprint.
  • 5. Carrilo, J.A., Ferreira, L.C.F., Asymptotic behavior for the sub-critical dissipative quasi-geostrophic equations, preprint.
  • 6. Chae, D., Córdoba, A., Córdoba, D., and Fontelos, M.A., Finite time singularities in a 1D model of the quasi-geostrophic equation, Adv. Math. 194 (2005), 203-223. MR 2141858 (2006a:76116)
  • 7. Constantin, P., Nie, Q., and Schörghofer, N., Nonsingular surface quasi-geostrophic flow, Phys. Lett. A 241 (1998), 168-172. MR 1613907 (99a:76031)
  • 8. Constantin, P., Córdoba, D., and Wu, J., On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 50, (2001), 97-107. MR 1855665 (2002h:35246)
  • 9. Constantin, P., Lax, P., and Majda, A., A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math. 38 (1985), 715-724. MR 812343 (87a:76037)
  • 10. Córdoba, D., Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math. 148 (1998), 1135-1152. MR 1670077 (2000j:76020)
  • 11. Córdoba, A., Córdoba, D., and Fontelos, M.A., Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math. 162 (2005) (3), 1377-1389. MR 2179734 (2007b:35011)
  • 12. Córdoba, A., Córdoba, D., and Fontelos, M.A., Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pures Appl. 86 (2006) (6), 529-540. MR 2281451 (2007k:35040)
  • 13. Constantin, P., Majda, A.J., and Tabak, E., Formation of strong fronts in the $ 2$-D quasigeostrophic thermal active scalar. Nonlinearity 7 (1994), no. 6, 1495-1533. MR 1304437 (95i:76107)
  • 14. Dong, H., Higher regularity for the critical and super-critical dissipative quasi-geostrophic equations, arXiv:math.AP/0701826.
  • 15. Dong, H., On the well-posedness for a transport equation with nonlocal velocity, preprint.
  • 16. Dong, H., Du, D., Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, to appear in Discrete Contin. Dyn. Syst., arXiv:math.AP/0701828.
  • 17. Dong, H., Li, D., Spatial analyticity of the solutions to the sub-critical dissipative quasi-geostrophic equations, submitted.
  • 18. De Gregorio, S., A partial differential equation arising in a 1D model for the 3D vorticity equation, Math. Methods Appl. Sci. 19 (1996), 1233-1255. MR 1410208 (97i:76031)
  • 19. Ju, N., Dissipative quasi-geostrophic equation: local well-posedness, global regularity and similarity solutions, Indiana Univ. Math. J. (2006), in press.
  • 20. Kiselev, A., Nazarov, F., and Volberg, A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), no. 3, 445-453. MR 2276260
  • 21. Majda, A.J., Tabak, E.G., A two-dimensional model for quasi-geostrophic flow: comparison with the two-dimensional Euler flow, Physica D. 98 (1996), 515-522. MR 1422288 (97g:86005)
  • 22. Ohkitani, K., Yamada, M., Inviscid and inviscid-limit behavior of a surface quasi-geostrophic flow, Phys. Fluids 9 (1997), 876-882. MR 1437554 (97m:76032)
  • 23. Pedlosky, J., Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
  • 24. Sakajo, T., On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term, Nonlinearity 16 (2003), 1319-1328. MR 1986297 (2004d:76029)
  • 25. Schochet, S., Explicit solutions of the viscous model vorticity equation, Comm. Pure Appl. Math. 41 (1986), 531-537. MR 840339 (87h:35322)
  • 26. Yang, Y., Behavior of solutions of model equations for incompressible fluid flow, J. Differential Equations 125 (1996), 133-153. MR 1376063 (97b:76045)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35Q35, 82C70

Retrieve articles in all journals with MSC (2000): 35Q35, 82C70


Additional Information

Hongjie Dong
Affiliation: Division of Applied Mathematics, Brown University, 182 George Street, Providence, Rhode Island 02912
Email: hdong@brown.edu

Dong Li
Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
Email: dongli@math.ias.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09328-3
Keywords: Mellin transform, finite-time singularities, quasi-geostrophic equations, global well-posedness.
Received by editor(s): June 11, 2007
Published electronically: February 21, 2008
Additional Notes: The authors were partially supported by the National Science Foundation under agreement No. DMS-0111298.
Communicated by: Walter Craig
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society