Modular forms of halfintegral weight with few nonvanishing coefficients modulo
Author:
D. Choi
Journal:
Proc. Amer. Math. Soc. 136 (2008), 26832688
MSC (2000):
Primary 11F11, 11F33
Published electronically:
March 27, 2008
MathSciNet review:
2399029
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Bruinier and Ono classified cusp forms of halfintegral weight whose Fourier coefficients are not well distributed for modulo odd primes . Ahlgren and Boylan established bounds for the weight of such a cusp form and used these bounds to prove Newman's conjecture for the partition function for primepower moduli. In this note, we give a simple proof of Ahlgren and Boylan's result on bounds of cusp forms of halfintegral weight.
 1.
Scott
Ahlgren and Matthew
Boylan, Arithmetic properties of the partition function,
Invent. Math. 153 (2003), no. 3, 487–502. MR 2000466
(2004e:11115), http://dx.doi.org/10.1007/s0022200302956
 2.
Scott
Ahlgren and Matthew
Boylan, Coefficients of halfintegral weight modular forms modulo
𝑙^{𝑗}, Math. Ann. 331 (2005),
no. 1, 219–239. MR 2107445
(2005k:11091), http://dx.doi.org/10.1007/s0020800405559
 3.
Antal
Balog, Henri
Darmon, and Ken
Ono, Congruence for Fourier coefficients of halfintegral weight
modular forms and special values of 𝐿functions, Analytic
number theory, Vol. 1 (Allerton Park, IL, 1995) Progr. Math.,
vol. 138, Birkhäuser Boston, Boston, MA, 1996,
pp. 105–128. MR 1399333
(97e:11056)
 4.
Jan
Hendrik Bruinier, Nonvanishing modulo 𝑙 of Fourier
coefficients of halfintegral weight modular forms, Duke Math. J.
98 (1999), no. 3, 595–611. MR 1695803
(2000d:11061), http://dx.doi.org/10.1215/S0012709499098198
 5.
Jan
H. Bruinier and Ken
Ono, Coefficients of halfintegral weight modular forms, J.
Number Theory 99 (2003), no. 1, 164–179. MR 1957250
(2004b:11056), http://dx.doi.org/10.1016/S0022314X(02)000616
 6.
Benedict
H. Gross, A tameness criterion for Galois representations
associated to modular forms (mod 𝑝), Duke Math. J.
61 (1990), no. 2, 445–517. MR 1074305
(91i:11060), http://dx.doi.org/10.1215/S0012709490061198
 7.
Ken
Ono, The web of modularity: arithmetic of the coefficients of
modular forms and 𝑞series, CBMS Regional Conference Series in
Mathematics, vol. 102, Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 2004. MR 2020489
(2005c:11053)
 8.
Ken
Ono and Christopher
Skinner, Fourier coefficients of halfintegral weight modular forms
modulo 𝑙, Ann. of Math. (2) 147 (1998),
no. 2, 453–470. MR 1626761
(99f:11059a), http://dx.doi.org/10.2307/121015
 9.
Ken
Ono and Christopher
Skinner, Corrigendum: “Fourier coefficients of halfintegral
weight modular forms modulo 𝑙”, Ann. of Math. (2)
148 (1998), no. 1, 361. MR 1652912
(99f:11059b), http://dx.doi.org/10.2307/120998
 10.
JeanPierre
Serre, Formes modulaires et fonctions zêta
𝑝adiques, Modular functions of one variable, III (Proc.
Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973,
pp. 191–268. Lecture Notes in Math., Vol. 350 (French). MR 0404145
(53 #7949a)
 11.
H.
P. F. SwinnertonDyer, On 𝑙adic representations and
congruences for coefficients of modular forms, Modular functions of
one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972)
Springer, Berlin, 1973, pp. 1–55. Lecture Notes in Math., Vol.
350. MR
0406931 (53 #10717a)
 1.
 S. Ahlgren and M. Boylan, Arithmetic properties of the partition function. Invent. Math. 153(3):487502, 2003. MR 2000466 (2004e:11115)
 2.
 S. Ahlgren and M. Boylan, Coefficients of halfintegral weight modular forms modulo . Math. Ann. 331(1):219239, 2005. MR 2107445 (2005k:11091)
 3.
 Antal Balog, Henri Darmon and Ken Ono, Congruence for Fourier coefficients of halfintegral weight modular forms and special values of functions. (English summary) Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), 105128, Progr. Math., 138, Birkhäuser Boston, Boston, MA, 1996. MR 1399333 (97e:11056)
 4.
 Jan Hendrik Bruinier, Nonvanishing modulo of Fourier coefficients of halfintegral weight modular forms. Duke Math. J. 98(3):595611, 1999. MR 1695803 (2000d:11061)
 5.
 J. H. Bruinier and K. Ono, Coefficients of halfintegral weight modular forms, J. Number Theory 99(1): 164179, 2003. MR 1957250 (2004b:11056)
 6.
 Benedict H. Gross, A tameness criterion for Galois representations associated to modular forms . Duke Math. J. 61(2):445517, 1990. MR 1074305 (91i:11060)
 7.
 K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and series, CBMS Regional Conf. Series in Math., vol. 102, Amer. Math. Soc., 2004. MR 2020489 (2005c:11053)
 8.
 Ken Ono, Christopher Skinner, Fourier coefficients of halfintegral weight modular forms modulo , Ann. of Math. (2), 147(2):453470, 1998. MR 1626761 (99f:11059a)
 9.
 Ken Ono, Christopher Skinner, Corrigendum: ``Fourier coefficients of halfintegral weight modular forms modulo '', Ann. of Math. (2), 148(1):361, 1998. MR 1652912 (99f:11059b)
 10.
 JeanPierre Serre, Formes modulaires et fonctions zeta adiques (French). Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191268. Lecture Notes in Math., vol. 350, Springer, Berlin, 1973. MR 0404145 (53:7949a)
 11.
 H. P. F. SwinnertonDyer, On adic representations and congruences for coefficients of modular forms. Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 155. Lecture Notes in Math., vol. 350, Springer, Berlin, 1973. MR 0406931 (53:10717a)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11F11,
11F33
Retrieve articles in all journals
with MSC (2000):
11F11,
11F33
Additional Information
D. Choi
Affiliation:
School of Mathematics, KIAS, 20743 Cheongnyangni 2dong 130722, Korea
Email:
choija@postech.ac.kr
DOI:
http://dx.doi.org/10.1090/S0002993908091958
PII:
S 00029939(08)091958
Keywords:
Modular forms,
congruences
Received by editor(s):
January 12, 2007
Received by editor(s) in revised form:
April 24, 2007
Published electronically:
March 27, 2008
Communicated by:
Ken Ono
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
