Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Solution of the Karlin problem for zero-diminishing sequences satisfying a Carleman condition


Authors: Andrew Bakan and Stephan Ruscheweyh
Journal: Proc. Amer. Math. Soc. 136 (2008), 2665-2674
MSC (2000): Primary 12D10, 26C10, 30E05; Secondary 30C15, 30D15
DOI: https://doi.org/10.1090/S0002-9939-08-09256-3
Published electronically: March 27, 2008
MathSciNet review: 2399027
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe all zero-diminishing sequences (over the real-valued polynomials on $ \mathbb{R}$) which additionally satisfy a Carleman condition and show that they are of the same kind as those in E. Laguerre's theorem from 1884.


References [Enhancements On Off] (What's this?)

  • 1. N.I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
  • 2. A. Bakan, Polynomial density in $ L_p (R, d \mu ) $ and representation of all measures which generate a determinate Hamburger moment problem, Approximation, Optimization and Mathematical Economics (Pointe-à-Pitre, 1999), Physica, Heidelberg, 2001, 37-46. MR 1842874 (2002i:41004)
  • 3. A. Bakan, T. Craven, G. Csordas and A. Golub, Weakly increasing zero-diminishing sequences, Serdica Math. J. 22 (1996), 4, 547-570. MR 1483605 (98k:26025)
  • 4. A. Bakan, T. Craven and G. Csordas, Interpolation and the Laguerre-Pólya class, Southwest J. Pure Appl. Math. 1 (2001), 38-53. Available at rattler.cameron.edu/swjpam/swjpam.html. MR 1841319 (2002g:41001)
  • 5. A. Bakan and A. Golub, Some negative results on sequences of multipliers of the first kind, Ukrain. Mat. Zh. 44 (1992), 3, 305-309 (Russian); English transl.: Ukrainian Math. J. 44 (1992), 3, 264-268. MR 1185923 (93m:26030)
  • 6. A. Bakan and St. Ruscheweyh, On the existence of generalized Pólya frequency functions corresponding to entire functions with zeros in angular sectors, In honor of Professor Erwin Kreyszig on the occasion of his 80th birthday, Complex Var. Theory Appl. 47 (2002), 7, 565-576. MR 1918559 (2003g:42012)
  • 7. Ch. Berg and M. Thill, Rotation invariant moment problems, Acta Math. 167 (1991), 207-227. MR 1120603 (92j:44004)
  • 8. Ch. Berg and A. Duran, The index of determinacy for measures and the $ {l}^2$-norm of ortho- normal polynomials, Trans. Amer. Math. Soc. 347 (1995), 2795-2811. MR 1308001 (96f:30033)
  • 9. Ch. Berg and A. Duran, A transformation from Hausdorff to Stieltjes moment sequences, Ark. Mat. 42 (2004), 239-257. MR 2101386 (2005j:40006)
  • 10. N. Bourbaki, Intégration, Chapitres VI-VIII, Hermann et Cie, Paris 1244 (1956), 1281 (1959), 1306 (1963). MR 0124722 (23:A2033), MR 0179291 (31:3539), MR 2098271 (2005f:28001)
  • 11. T. Carleman, Sur le problème des moments, Comptes Rendus 174 (1922), 1680-1682.
  • 12. T. Carleman, Les fonctions quasi-analytiques, Gauthier-Villars, Paris, 1926, 115 pp.
  • 13. T. Craven and G. Csordas, Jensen polynomials and the Turán and Laguerre inequalities, Pacific. J. Math. 136 (1989), 241-260. MR 978613 (90a:26035)
  • 14. T. Craven and G. Csordas, Zero-diminishing linear transformations, Proc. Amer. Math. Soc. 80 (1980), 4, 544-546. MR 587923 (82a:12013)
  • 15. T. Craven and G. Csordas, Complex zero decreasing sequences, Methods Appl. Anal. 2 (1995), 4, 420-441. MR 1376305 (98a:26015)
  • 16. T. Craven and G. Csordas, Problems and theorems in the theory of multiplier sequences, Serdica Math. J. 22 (1996), 4, 515-524. MR 1483603 (98k:26024)
  • 17. I. Hirschman and D. Widder, The convolution transform, Princeton Univ. Press, Princeton, New Jersey, 1955. MR 0073746 (17:479c)
  • 18. L. Iliev, Laguerre entire functions, Publ. House of the Bulg. Acad. Sci., Sofia, 1987, 188 pp. MR 937705 (89h:30042)
  • 19. A. Iserles, S.P. Norsett and E. B. Saff, On transformations and zeros of polynomials, Rocky Mountain J. Math. 21 (1991), 331-357. MR 1113932 (92f:42028)
  • 20. S. Karlin, Total Positivity, vol. 1. Stanford Univ. Press, Stanford, Calif., 1968. MR 0230102 (37:5667)
  • 21. E. Laguerre, Sur quelques points de la théorie des équations numériques, Acta Math. 4 (1884), 97-120. MR 1554633
  • 22. S. N. Mergelyan, Weighted approximation by polynomials, Uspekhi Mat. Nauk 11 (1956), 107-152 (Russian); English transl.: Amer. Math. Soc. Transl. 10 (1958), 59-106. MR 0094633 (20:1146)
  • 23. I. P. Natanson, Constructive Function Theory, Vol. II, Approximation in Mean (translation by J. R. Schulenberger), Frederick Ungar Pub. Co., New York, 1965. MR 0196341 (33:4529b)
  • 24. G. Pólya and J. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. Reine Angew. Math. 144 (1914), 89-113.
  • 25. M. Riesz, Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Ac. Sci. Szeged 1 (1923), 209-225.
  • 26. W. Rudin, Principles of mathematical analysis, 3rd. ed., McGraw-Hill, New York, 1976. MR 0385023 (52:5893)
  • 27. I. Schoenberg, On Pólya frequency functions I: The totally positive functions and their Laplace transforms, J. d'Anal. Math. 1 (1951), 331-374. MR 0047732 (13:923c)
  • 28. J. Shohat and J. Tamarkin, The problem of moments, Math. Surveys, Number I, AMS, New York, 1943. MR 0008438 (5:5c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 12D10, 26C10, 30E05, 30C15, 30D15

Retrieve articles in all journals with MSC (2000): 12D10, 26C10, 30E05, 30C15, 30D15


Additional Information

Andrew Bakan
Affiliation: Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska Street 3, Kyiv 01601, Ukraine
Email: andrew@bakan.kiev.ua

Stephan Ruscheweyh
Affiliation: Mathematisches Institut, Universitat Würzburg, 97074 Würzburg, Germany
Email: ruscheweyh@mathematik.uni-wuerzburg.de

DOI: https://doi.org/10.1090/S0002-9939-08-09256-3
Keywords: Zero-diminishing sequences, moment problems, zeros of polynomials
Received by editor(s): October 28, 2005
Received by editor(s) in revised form: April 10, 2007
Published electronically: March 27, 2008
Additional Notes: This work was completed while A. Bakan was visiting Würzburg University, supported by the German Academic Exchange Service (DAAD, grant 322-A/02/12977). S. Ruscheweyh acknowledges partial support from the German-Israeli Foundation (grant G-809-234.6/2003)
Communicated by: David Preiss
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society