Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Computation of the Mordell-Tornheim zeta values

Authors: Aleksandar Petojevic and H. M. Srivastava
Journal: Proc. Amer. Math. Soc. 136 (2008), 2719-2728
MSC (2000): Primary 11M06, 33E20; Secondary 11B73, 33B15
Published electronically: April 10, 2008
MathSciNet review: 2399033
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the authors present several algorithmic formulas which are potentially useful in computing the following Mordell-Tornheim zeta values:

$\displaystyle \zeta_{MT,r}(s_1,\; \cdots ,s_r;s) :=\sum_{m_1,\; \cdots, m_r=1}^\infty\frac{1}{m_1^{s_1}\; \cdots m_r^{s_r}(m_1+\cdots +m_r)^s}$

for the special cases

$\displaystyle \zeta_{MT,r}(1,\; \cdots ,1;s)$   and$\displaystyle \qquad \zeta_{MT,r}(0,\; \cdots ,0;s).$

Some interesting (known or new) consequences and illustrative examples are also considered.

References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas$ ,$ Graphs$ ,$ and Mathematical Tables, Applied Mathematics Series 55, National Bureau of Standards, Washington, D.C., 1964; reprinted by Dover Publications, New York, 1970. MR 0167642 (29:4914)
  • 2. S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), 327-351. MR 1891413 (2003d:11136)
  • 3. J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005), 51-70. MR 2190721 (2006k:11161)
  • 4. M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275-290. MR 1141796 (92i:11089)
  • 5. M. E. Hoffman, References on multiple zeta values and Euler sum (available at
  • 6. C. Jordan, Calculus of Finite Differences, Chelsea Publishing Company, New York, 1965. MR 0183987 (32:1463)
  • 7. C. Markett, Triple sums and the Riemann zeta function, J. Number Theory 48 (1994), 113-132. MR 1285535 (95f:11067)
  • 8. K. Matsumoto, On the analytic continuation of various multiple zeta-functions, in Number Theory for the Millennium. II$ :$ Proceedings of the Millennial Conference on Number Theory (Urbana, Illinois; May 21-26, 2000) (M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand and W. Philipp, Editors), pp. 417-440, A K Peters, Natick, Massachusetts, 2002. MR 1956262 (2004a:11094)
  • 9. K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, in Proceedings of the Session in Analytic Number Theory and Diophantine Equations (Bonn; January-June 2002) (D. R. Heath-Brown and B. Z. Moroz, Editors), 17 pp., Bonner Mathematische Schriften 360 (25), Universität Bonn, Bonn, 2003. MR 2075634 (2005f:11198)
  • 10. L. J. Mordell, On the evaluation of some multiple series, J. London Math. Soc. 33 (1958), 368-371. MR 0100181 (20:6615)
  • 11. M. V. Subbarao and R. Sitaramachandrarao, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119 (1985), 245-255. MR 797027 (87c:11091)
  • 12. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series of Elementary Functions, Nauka, Moscow, 1981 (in Russian). MR 635931 (83b:00009)
  • 13. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001. MR 1849375 (2003a:11107)
  • 14. L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303-314. MR 0034860 (11:654a)
  • 15. H. Tsumura, On Mordell-Tornheim zeta values, Proc. Amer. Math. Soc. 133 (2005), 2387-2393. MR 2138881 (2006k:11179)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11M06, 33E20, 11B73, 33B15

Retrieve articles in all journals with MSC (2000): 11M06, 33E20, 11B73, 33B15

Additional Information

Aleksandar Petojevic
Affiliation: Faculty of Education, University of Novi Sad, Podgorička 4, YU-25000 Sombor, Serbia
Email: apetoje@ptt.yu

H. M. Srivastava
Affiliation: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada

Keywords: Mordell-Tornheim zeta values, Riemann zeta function, gamma function, Stirling numbers of the first kind, polygamma functions, integral representations, recursion formulas, monotone convergence theorem.
Received by editor(s): June 20, 2007
Published electronically: April 10, 2008
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society