Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The sum-product estimate for large subsets of prime fields


Author: M. Z. Garaev
Journal: Proc. Amer. Math. Soc. 136 (2008), 2735-2739
MSC (2000): Primary 11B75, 11T23
DOI: https://doi.org/10.1090/S0002-9939-08-09386-6
Published electronically: April 14, 2008
MathSciNet review: 2399035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbb{F}_p$ be the field of prime order $ p.$ It is known that for any integer $ N\in [1,p]$ one can construct a subset $ A\subset\mathbb{F}_p$ with $ \vert A\vert= N$ such that

$\displaystyle \max\{\vert A+A\vert, \vert AA\vert\}\ll p^{1/2}\vert A\vert^{1/2}. $

One of the results of the present paper implies that if $ A\subset \mathbb{F}_p$ with $ \vert A\vert>p^{2/3},$ then

$\displaystyle \max\{\vert A+A\vert, \vert AA\vert\}\gg p^{1/2}\vert A\vert^{1/2}. $


References [Enhancements On Off] (What's this?)

  • 1. J. Bourgain, The sum-product theorem in $ Z_q$ with $ q$ arbitrary, preprint.
  • 2. J. Bourgain, More on the sum-product phenomenon in prime fields and its applications, Int. J. Number Theory 1 (2005), 1-32. MR 2172328 (2006g:11041)
  • 3. J. Bourgain and M.-C. Chang, Exponential sum estimates over subgroups and almost subgroups of $ \mathbb{Z}\sb Q\sp *$, where $ Q$ is composite with few prime factors, Geom. Funct. Anal. 16 (2006), 327-366. MR 2231466 (2007d:11093)
  • 4. J. Bourgain, A. A. Glibichuk and S. V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006), 380-398. MR 2225493 (2007e:11092)
  • 5. J. Bourgain, N. Katz and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27-57. MR 2053599 (2005d:11028)
  • 6. M.-C. Chang, Some problems in combinatorial number theory, preprint.
  • 7. P. Erdös and E. Szemerédi, On sums and products of integers. Studies in pure mathematics, 213-218, Birkhäuser, Basel, 1983. MR 820223 (86m:11011)
  • 8. M. Z. Garaev, An explicit sum-product estimate in $ F_p$, Int. Math. Res. Notices (2007), no. 11, Art. ID rnm035. MR 2344270
  • 9. D. Hart, A. Iosevich and J. Solymosi, Sum-product estimates in finite fields via Kloosterman sums, Int. Math. Res. Notices (2007), no. 5, Art. ID rnm007. MR 2341599
  • 10. N. H. Katz and Ch.-Y. Shen, A slight improvement to Garaev's sum product estimate, preprint.
  • 11. N. H. Katz and Ch.-Y. Shen, Garaev's inequality in fields not of prime order, preprint.
  • 12. J. Solymosi, On the number of sums and products, Bull. London Math. Soc. 37 (2005), 491-494. MR 2143727 (2006c:11021)
  • 13. I. M. Vinogradov, An introduction to the theory of numbers, Pergamon Press, London and New York, 1955. MR 0070644 (17:13a)
  • 14. V. Vu, Sum-product estimates via directed expanders, arXiv:0705.0715v1 [math.CO].

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11B75, 11T23

Retrieve articles in all journals with MSC (2000): 11B75, 11T23


Additional Information

M. Z. Garaev
Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 61-3 (Xangari), C.P. 58089, Morelia, Michoacán, México
Email: garaev@matmor.unam.mx

DOI: https://doi.org/10.1090/S0002-9939-08-09386-6
Keywords: Sum-product estimates, prime field, number of solutions.
Received by editor(s): June 26, 2007
Published electronically: April 14, 2008
Communicated by: Ken Ono
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society