The sum-product estimate for large subsets of prime fields

Author:
M. Z. Garaev

Journal:
Proc. Amer. Math. Soc. **136** (2008), 2735-2739

MSC (2000):
Primary 11B75, 11T23

DOI:
https://doi.org/10.1090/S0002-9939-08-09386-6

Published electronically:
April 14, 2008

MathSciNet review:
2399035

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the field of prime order It is known that for any integer one can construct a subset with such that

**1.**J. Bourgain,*The sum-product theorem in with arbitrary,*preprint.**2.**J. Bourgain,*More on the sum-product phenomenon in prime fields and its applications,*Int. J. Number Theory**1**(2005), 1-32. MR**2172328 (2006g:11041)****3.**J. Bourgain and M.-C. Chang,*Exponential sum estimates over subgroups and almost subgroups of , where is composite with few prime factors,*Geom. Funct. Anal.**16**(2006), 327-366. MR**2231466 (2007d:11093)****4.**J. Bourgain, A. A. Glibichuk and S. V. Konyagin,*Estimates for the number of sums and products and for exponential sums in fields of prime order,*J. London Math. Soc. (2)**73**(2006), 380-398. MR**2225493 (2007e:11092)****5.**J. Bourgain, N. Katz and T. Tao,*A sum-product estimate in finite fields, and applications,*Geom. Funct. Anal.**14**(2004), 27-57. MR**2053599 (2005d:11028)****6.**M.-C. Chang,*Some problems in combinatorial number theory*, preprint.**7.**P. Erdös and E. Szemerédi,*On sums and products of integers. Studies in pure mathematics*, 213-218, Birkhäuser, Basel, 1983. MR**820223 (86m:11011)****8.**M. Z. Garaev,*An explicit sum-product estimate in ,*Int. Math. Res. Notices (2007), no. 11, Art. ID rnm035. MR**2344270****9.**D. Hart, A. Iosevich and J. Solymosi,*Sum-product estimates in finite fields via Kloosterman sums,*Int. Math. Res. Notices (2007), no. 5, Art. ID rnm007. MR**2341599****10.**N. H. Katz and Ch.-Y. Shen,*A slight improvement to Garaev's sum product estimate,*preprint.**11.**N. H. Katz and Ch.-Y. Shen,*Garaev's inequality in fields not of prime order,*preprint.**12.**J. Solymosi,*On the number of sums and products,*Bull. London Math. Soc.**37**(2005), 491-494. MR**2143727 (2006c:11021)****13.**I. M. Vinogradov,*An introduction to the theory of numbers*, Pergamon Press, London and New York, 1955. MR**0070644 (17:13a)****14.**V. Vu,*Sum-product estimates via directed expanders,*arXiv:0705.0715v1 [math.CO].

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11B75,
11T23

Retrieve articles in all journals with MSC (2000): 11B75, 11T23

Additional Information

**M. Z. Garaev**

Affiliation:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 61-3 (Xangari), C.P. 58089, Morelia, Michoacán, México

Email:
garaev@matmor.unam.mx

DOI:
https://doi.org/10.1090/S0002-9939-08-09386-6

Keywords:
Sum-product estimates,
prime field,
number of solutions.

Received by editor(s):
June 26, 2007

Published electronically:
April 14, 2008

Communicated by:
Ken Ono

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.