The sum-product estimate for large subsets of prime fields

Author:
M. Z. Garaev

Journal:
Proc. Amer. Math. Soc. **136** (2008), 2735-2739

MSC (2000):
Primary 11B75, 11T23

DOI:
https://doi.org/10.1090/S0002-9939-08-09386-6

Published electronically:
April 14, 2008

MathSciNet review:
2399035

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the field of prime order It is known that for any integer one can construct a subset with such that

**1.**J. Bourgain,*The sum-product theorem in with arbitrary,*preprint.**2.**J. Bourgain,*More on the sum-product phenomenon in prime fields and its applications*, Int. J. Number Theory**1**(2005), no. 1, 1–32. MR**2172328**, https://doi.org/10.1142/S1793042105000108**3.**J. Bourgain and M.-C. Chang,*Exponential sum estimates over subgroups and almost subgroups of ℤ_{ℚ}*, where ℚ is composite with few prime factors*, Geom. Funct. Anal.**16**(2006), no. 2, 327–366. MR**2231466**, https://doi.org/10.1007/s00039-006-0558-7**4.**J. Bourgain, A. A. Glibichuk, and S. V. Konyagin,*Estimates for the number of sums and products and for exponential sums in fields of prime order*, J. London Math. Soc. (2)**73**(2006), no. 2, 380–398. MR**2225493**, https://doi.org/10.1112/S0024610706022721**5.**J. Bourgain, N. Katz, and T. Tao,*A sum-product estimate in finite fields, and applications*, Geom. Funct. Anal.**14**(2004), no. 1, 27–57. MR**2053599**, https://doi.org/10.1007/s00039-004-0451-1**6.**M.-C. Chang,*Some problems in combinatorial number theory*, preprint.**7.**P. Erdős and E. Szemerédi,*On sums and products of integers*, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 213–218. MR**820223****8.**M. Z. Garaev,*An explicit sum-product estimate in 𝔽_{𝕡}*, Int. Math. Res. Not. IMRN**11**(2007), Art. ID rnm035, 11. MR**2344270****9.**Derrick Hart, Alex Iosevich, and Jozsef Solymosi,*Sum-product estimates in finite fields via Kloosterman sums*, Int. Math. Res. Not. IMRN**5**(2007), Art. ID rnm007, 14. MR**2341599**, https://doi.org/10.1093/imrn/rnm007**10.**N. H. Katz and Ch.-Y. Shen,*A slight improvement to Garaev's sum product estimate,*preprint.**11.**N. H. Katz and Ch.-Y. Shen,*Garaev's inequality in fields not of prime order,*preprint.**12.**József Solymosi,*On the number of sums and products*, Bull. London Math. Soc.**37**(2005), no. 4, 491–494. MR**2143727**, https://doi.org/10.1112/S0024609305004261**13.**I. M. Vinogradov,*An introduction to the theory of numbers*, Pergamon Press, London & New York, 1955. Translated by H. Popova. MR**0070644****14.**V. Vu,*Sum-product estimates via directed expanders,*arXiv:0705.0715v1 [math.CO].

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11B75,
11T23

Retrieve articles in all journals with MSC (2000): 11B75, 11T23

Additional Information

**M. Z. Garaev**

Affiliation:
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 61-3 (Xangari), C.P. 58089, Morelia, Michoacán, México

Email:
garaev@matmor.unam.mx

DOI:
https://doi.org/10.1090/S0002-9939-08-09386-6

Keywords:
Sum-product estimates,
prime field,
number of solutions.

Received by editor(s):
June 26, 2007

Published electronically:
April 14, 2008

Communicated by:
Ken Ono

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.