A sharp upper bound for the first Dirichlet eigenvalue and the growth of the isoperimetric constant of convex domains

Authors:
Pedro Freitas and David Krejcirík

Journal:
Proc. Amer. Math. Soc. **136** (2008), 2997-3006

MSC (2000):
Primary 58J50, 35P15

Published electronically:
April 7, 2008

MathSciNet review:
2399068

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that as the ratio between the first Dirichlet eigenvalues of a convex domain and of the ball with the same volume becomes large, the same must happen to the corresponding ratio of isoperimetric constants. The proof is based on the generalization to arbitrary dimensions of Pólya and Szegö's upper bound for the first eigenvalue of the Dirichlet Laplacian on planar star-shaped domains which depends on the support function of the domain.

As a by-product, we also obtain a sharp upper bound for the spectral gap of convex domains.

**[A]**M. I. Aissen,*A set function defined for convex plane domaines*, Pacific J. Math.**8**(1958), 383–399. MR**0123968****[AF1]**Pedro Antunes and Pedro Freitas,*New bounds for the principal Dirichlet eigenvalue of planar regions*, Experiment. Math.**15**(2006), no. 3, 333–342. MR**2264470****[AF2]**P. Antunes and P. Freitas, A numerical study of the spectral gap, J. Phys. A: Math. Theor.**41**(2008), 055201.**[AM1]**Tom M. Apostol and Mamikon A. Mnatsakanian,*Figures circumscribing circles*, Amer. Math. Monthly**111**(2004), no. 10, 853–863. MR**2104691**, 10.2307/4145094**[AM2]**Tom M. Apostol and Mamikon A. Mnatsakanian,*Solids circumscribing spheres*, Amer. Math. Monthly**113**(2006), no. 6, 521–540. MR**2231137**, 10.2307/27641977**[AB]**Mark S. Ashbaugh and Rafael D. Benguria,*A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions*, Ann. of Math. (2)**135**(1992), no. 3, 601–628. MR**1166646**, 10.2307/2946578**[BC]**J. Bertrand and B. Colbois,*Capacité et inégalité de Faber-Krahn dans ℝⁿ*, J. Funct. Anal.**232**(2006), no. 1, 1–28 (French, with English and French summaries). MR**2200165**, 10.1016/j.jfa.2005.04.015**[BZ]**Yu. D. Burago and V. A. Zalgaller,*Geometric inequalities*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR**936419****[EE]**D. E. Edmunds and W. D. Evans,*Spectral theory and differential operators*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR**929030****[FMP]**N. Fusco, F. Maggi and A. Pratelli, Stability estimates for certain Faber-Krahn, iso- capacitary and Cheeger inequalities, to appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze.**[G]**H. Guggenheimer,*Concave solutions of a Dirichlet problem*, Proc. Amer. Math. Soc.**40**(1973), 501–506. MR**0330481**, 10.1090/S0002-9939-1973-0330481-7**[HS]**Joseph Hersch and William Sawyer,*Numerical implementation of coherence for the example of the “Swiss cross”*, Numer. Math.**59**(1991), no. 7, 659–665. MR**1128461**, 10.1007/BF01385802**[MS]**Vladimir Maz′ya and Mikhail Shubin,*Can one see the fundamental frequency of a drum?*, Lett. Math. Phys.**74**(2005), no. 2, 135–151. MR**2191951**, 10.1007/s11005-005-0010-1**[M]**Antonios D. Melas,*The stability of some eigenvalue estimates*, J. Differential Geom.**36**(1992), no. 1, 19–33. MR**1168980****[PW]**L. E. Payne and H. F. Weinberger,*Some isoperimetric inequalities for membrane frequencies and torsional rigidity*, J. Math. Anal. Appl.**2**(1961), 210–216. MR**0149735****[P]**G. Pólya,*Two more inequalities between physical and geometrical quantities*, J. Indian Math. Soc. (N.S.)**24**(1960), 413–419 (1961). MR**0133059****[PS]**G. Pólya and G. Szegö,*Isoperimetric Inequalities in Mathematical Physics*, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. MR**0043486****[Po]**Andrei D. Polyanin,*Handbook of linear partial differential equations for engineers and scientists*, Chapman & Hall/CRC, Boca Raton, FL, 2002. MR**1935578****[Pr]**M. H. Protter,*A lower bound for the fundamental frequency of a convex region*, Proc. Amer. Math. Soc.**81**(1981), no. 1, 65–70. MR**589137**, 10.1090/S0002-9939-1981-0589137-2**[S]**Alessandro Savo,*Lower bounds for the nodal length of eigenfunctions of the Laplacian*, Ann. Global Anal. Geom.**19**(2001), no. 2, 133–151. MR**1826398**, 10.1023/A:1010774905973

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
58J50,
35P15

Retrieve articles in all journals with MSC (2000): 58J50, 35P15

Additional Information

**Pedro Freitas**

Affiliation:
Department of Mathematics, Faculdade de Motricidade Humana (TU Lisbon) and Group of Mathematical Physics, University of Lisbon, Complexo Interdisciplinar, Av. Prof. Gama Pinto 2, P-1649-003 Lisboa, Portugal

Email:
freitas@cii.fc.ul.pt

**David Krejcirík**

Affiliation:
Department of Theoretical Physics, Nuclear Physics Institute, Academy of Sciences, 25068 Řež, Czech Republic

Email:
krejcirik@ujf.cas.cz

DOI:
https://doi.org/10.1090/S0002-9939-08-09399-4

Received by editor(s):
March 20, 2007

Received by editor(s) in revised form:
January 24, 2008

Published electronically:
April 7, 2008

Additional Notes:
This work was partially supported by FCT, Portugal, through programs POCTI/MAT/60863/2004, POCTI/POCI2010 and SFRH/BPD/11457/2002. The second author was also supported by the Czech Academy of Sciences and its Grant Agency within the projects IRP AV0Z10480505 and A100480501, and by the project LC06002 of the Ministry of Education, Youth and Sports of the Czech Republic.

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.