Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal Thurston-Bennequin number of $ +$adequate links


Author: Tamás Kálmán
Journal: Proc. Amer. Math. Soc. 136 (2008), 2969-2977
MSC (2000): Primary 57M25; Secondary 53D12
DOI: https://doi.org/10.1090/S0002-9939-08-09478-1
Published electronically: April 7, 2008
MathSciNet review: 2399065
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The class of $ +$adequate links contains both alternating and positive links. Generalizing results of Tanaka (for the positive case) and Ng (for the alternating case), we construct fronts of an arbitrary $ +$adequate link $ A$ so that the diagram has a ruling; therefore its Thurston-Bennequin number is maximal among Legendrian representatives of $ A$. We derive consequences for the Kauffman polynomial and Khovanov homology of $ +$adequate links.


References [Enhancements On Off] (What's this?)

  • 1. P. Cromwell: Knots and Links, Cambridge University Press, 2004. MR 2107964 (2005k:57011)
  • 2. J. Etnyre: Legendrian and transversal knots, in Handbook of Knot Theory, Elsevier B. V., Amsterdam, 2005, 105-185. MR 2179261 (2006j:57050)
  • 3. J. Etnyre and K. Honda: Knots and contact geometry I: torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001), no. 1, 63-120. MR 1959579 (2004d:57032)
  • 4. D. Fuchs: Chekanov-Eliashberg invariants of Legendrian knots: existence of augmentations, J. Geom. Phys. 47 (2003), no. 1, 43-65. MR 1985483 (2004h:57007)
  • 5. L. H. Kauffman: Knots and Physics, Series on Knots and Everything, vol. 1, World Scientific, New Jersey, 1991. MR 1141156 (93b:57010)
  • 6. T. Kálmán: Contact homology and one parameter families of Legendrian knots, Geom. Topol. 9 (2005), 2013-2078. MR 2209366 (2007c:53126)
  • 7. W. B. R. Lickorish and M. B. Thistlethwaite: Some links with non-trivial polynomials and their crossing numbers, Comment. Math. Helv. 63 (1988), no. 4, 527-539. MR 966948 (90a:57010)
  • 8. L. Ng: Maximal Thurston-Bennequin number of two-bridge links, Algebr. Geom. Topol. 1 (2001), 427-434. MR 1852765 (2002e:57020)
  • 9. L. Ng: A Legendrian Thurston-Bennequin bound from Khovanov homology, Algebr. Geom. Topol. 5 (2005), 1637-1653. MR 2186113 (2007g:57027)
  • 10. L. Rudolph: A congruence between link polynomials, Math. Proc. Camb. Phil. Soc. 107 (1990), 319-327. MR 1027784 (90k:57010)
  • 11. D. Rutherford: Thurston-Bennequin number, Kauffman polynomial, and ruling invariants of a Legendrian link: the Fuchs conjecture and beyond, Int. Math. Res. Not. 2006, Art. ID 78591. MR 2219227 (2007a:57020)
  • 12. T. Tanaka: Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Amer. Math. Soc. 127 (1999), 3427-3432. MR 1616601 (2000b:57014)
  • 13. T. Tanaka: Maximal Thurston-Bennequin numbers of alternating links, Topology Appl. 153 (2006), 2476-2483. MR 2243727 (2007f:57026)
  • 14. M. B. Thistlethwaite: On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), 285-296. MR 948102 (89g:57009)
  • 15. Y. Yokota: Polynomial invariants of positive links, Topology 31 (1992), no. 4, 805-811. MR 1191382 (93k:57028)
  • 16. Y. Yokota: The Kauffman polynomial of alternating links, Topology Appl. 65 (1995), 229-236. MR 1357866 (96m:57020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57M25, 53D12

Retrieve articles in all journals with MSC (2000): 57M25, 53D12


Additional Information

Tamás Kálmán
Affiliation: Graduate School of Mathematics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
Email: kalman@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-08-09478-1
Received by editor(s): November 9, 2006
Published electronically: April 7, 2008
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society