A separable deformation of the quaternion group algebra
Authors:
Nurit Barnea and Yuval Ginosar
Journal:
Proc. Amer. Math. Soc. 136 (2008), 26752681
MSC (2000):
Primary 16S80
Published electronically:
April 2, 2008
MathSciNet review:
2399028
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The DonaldFlanigan conjecture asserts that for any finite group and any field , the group algebra can be deformed to a separable algebra. The minimal unsolved instance, namely the quaternion group over a field of characteristic 2 was considered as a counterexample. We present here a separable deformation of . In a sense, the conjecture for any finite group is open again.
 1.
J.
D. Donald and F.
J. Flanigan, A deformationtheoretic version of Maschke’s
theorem for modular group algebras: the commutative case, J. Algebra
29 (1974), 98–102. MR 0342568
(49 #7314)
 2.
Karin
Erdmann, On semisimple deformations of local semidihedral
algebras, Arch. Math. (Basel) 63 (1994), no. 6,
481–487. MR 1300746
(95k:16044), http://dx.doi.org/10.1007/BF01202062
 3.
Karen
Erdmann and Malka
Schaps, Deformation of tame blocks and related algebras,
Quantum deformations of algebras and their representations (RamatGan,
1991/1992; Rehovot, 1991/1992) Israel Math. Conf. Proc., vol. 7,
BarIlan Univ., Ramat Gan, 1993, pp. 25–44. MR 1261899
(94m:16036)
 4.
Murray
Gerstenhaber, On the deformation of rings and algebras, Ann.
of Math. (2) 79 (1964), 59–103. MR 0171807
(30 #2034)
 5.
Murray
Gerstenhaber and Anthony
Giaquinto, Compatible deformations, Trends in the
representation theory of finitedimensional algebras (Seattle, WA, 1997)
Contemp. Math., vol. 229, Amer. Math. Soc., Providence, RI, 1998,
pp. 159–168. MR 1676217
(2000e:16029), http://dx.doi.org/10.1090/conm/229/03328
 6.
Murray
Gerstenhaber and Mary
E. Schaps, The modular version of Maschke’s theorem for
normal abelian 𝑝Sylows, J. Pure Appl. Algebra
108 (1996), no. 3, 257–264. MR 1384005
(97e:16063), http://dx.doi.org/10.1016/00224049(95)00047X
 7.
Murray
Gerstenhaber and Mary
E. Schaps, Hecke algebras,
𝑈_{𝑞}𝑠𝑙_{𝑛}, and the
DonaldFlanigan conjecture for 𝑆_{𝑛}, Trans. Amer. Math. Soc. 349 (1997), no. 8, 3353–3371. MR 1390035
(97j:20012), http://dx.doi.org/10.1090/S0002994797017613
 8.
Murray
Gerstenhaber, Anthony
Giaquinto, and Mary
E. Schaps, The DonaldFlanigan problem for finite reflection
groups, Lett. Math. Phys. 56 (2001), no. 1,
41–72. EuroConférence Moshé Flato 2000, Part I (Dijon).
MR
1848165 (2002g:16049), http://dx.doi.org/10.1023/A:1010846906745
 9.
I.
N. Herstein, Noncommutative rings, The Carus Mathematical
Monographs, No. 15, Published by The Mathematical Association of America;
distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205
(37 #2790)
 10.
J.
C. McConnell and J.
C. Robson, Noncommutative Noetherian rings, Pure and Applied
Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With
the cooperation of L. W. Small; A WileyInterscience Publication. MR 934572
(89j:16023)
 11.
M.
Peretz and M.
Schaps, Hecke algebras and separable deformations of dihedral
groups, Far East J. Math. Sci. (FJMS) 1 (1999),
no. 1, 17–26. MR 1686657
(2000i:20009)
 12.
Mary
Schaps, A modular version of Maschke’s theorem for groups
with cyclic 𝑝Sylow subgroups, J. Algebra 163
(1994), no. 3, 623–635. MR 1265854
(95b:20015), http://dx.doi.org/10.1006/jabr.1994.1034
 1.
 J. D. Donald and F. J. Flanigan, A deformationtheoretic version of Maschke's theorem for modular group algebras: The commutative case, J. Algebra 29 (1974), 98102. MR 0342568 (49:7314)
 2.
 K. Erdmann, On semisimple deformations of local semidihedral algebras, Arch. Math. 63 (1994), no. 6, 481487. MR 1300746 (95k:16044)
 3.
 K. Erdmann and M. Schaps, Deformation of tame blocks and related algebras, in: Quantum Deformations of Algebras and Their Representations, Israel Math. Conf. Proc. 7, BarIlan Univ., Ramat Gan (1993), 2544. MR 1261899 (94m:16036)
 4.
 M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59103. MR 0171807 (30:2034)
 5.
 M. Gerstenhaber and A. Giaquinto, Compatible deformations, Contemp. Math. 229, Amer. Math. Soc., Providence, RI (1998), 159168. MR 1676217 (2000e:16029)
 6.
 M. Gerstenhaber and M. E. Schaps, The modular version of Maschke's theorem for normal abelian Sylows, J. Pure Appl. Algebra 108 (1996), no. 3, 257264. MR 1384005 (97e:16063)
 7.
 M. Gerstenhaber and M. E. Schaps, Hecke algebras, , and the DonaldFlanigan conjecture for , Trans. Amer. Math. Soc. 349 (1997), no. 8, 33533371. MR 1390035 (97j:20012)
 8.
 M. Gerstenhaber, A. Giaquinto and M. E. Schaps, The DonaldFlanigan problem for finite reflection groups, Lett. Math. Phys. 56 (2001), no. 1, 4172. MR 1848165 (2002g:16049)
 9.
 I. N. Herstein, Noncommutative Rings, published by The Mathematical Association of America, distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205 (37:2790)
 10.
 J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons, Ltd., Chichester, UK, 1987. MR 934572 (89j:16023)
 11.
 M. Peretz and M. Schaps, Hecke algebras and separable deformations of dihedral groups, Far East J. Math. Sci. (FJMS) 1 (1999), no. 1, 1726. MR 1686657 (2000i:20009)
 12.
 M. Schaps, A modular version of Maschke's theorem for groups with cyclic Sylow subgroups, J. Algebra 163 (1994), no. 3, 623635. MR 1265854 (95b:20015)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
16S80
Retrieve articles in all journals
with MSC (2000):
16S80
Additional Information
Nurit Barnea
Affiliation:
Department of Mathematics, University of Haifa, Haifa 31905, Israel
Yuval Ginosar
Affiliation:
Department of Mathematics, University of Haifa, Haifa 31905, Israel
Email:
ginosar@math.haifa.ac.il
DOI:
http://dx.doi.org/10.1090/S000299390809480X
PII:
S 00029939(08)09480X
Received by editor(s):
April 23, 2007
Published electronically:
April 2, 2008
Communicated by:
Martin Lorenz
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
