Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A separable deformation of the quaternion group algebra


Authors: Nurit Barnea and Yuval Ginosar
Journal: Proc. Amer. Math. Soc. 136 (2008), 2675-2681
MSC (2000): Primary 16S80
DOI: https://doi.org/10.1090/S0002-9939-08-09480-X
Published electronically: April 2, 2008
MathSciNet review: 2399028
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Donald-Flanigan conjecture asserts that for any finite group $ G$ and any field $ k$, the group algebra $ kG$ can be deformed to a separable algebra. The minimal unsolved instance, namely the quaternion group $ Q_8$ over a field $ k$ of characteristic 2 was considered as a counterexample. We present here a separable deformation of $ kQ_8$. In a sense, the conjecture for any finite group is open again.


References [Enhancements On Off] (What's this?)

  • 1. J. D. Donald and F. J. Flanigan, A deformation-theoretic version of Maschke's theorem for modular group algebras: The commutative case, J. Algebra 29 (1974), 98-102. MR 0342568 (49:7314)
  • 2. K. Erdmann, On semisimple deformations of local semidihedral algebras, Arch. Math. 63 (1994), no. 6, 481-487. MR 1300746 (95k:16044)
  • 3. K. Erdmann and M. Schaps, Deformation of tame blocks and related algebras, in: Quantum Deformations of Algebras and Their Representations, Israel Math. Conf. Proc. 7, Bar-Ilan Univ., Ramat Gan (1993), 25-44. MR 1261899 (94m:16036)
  • 4. M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103. MR 0171807 (30:2034)
  • 5. M. Gerstenhaber and A. Giaquinto, Compatible deformations, Contemp. Math. 229, Amer. Math. Soc., Providence, RI (1998), 159-168. MR 1676217 (2000e:16029)
  • 6. M. Gerstenhaber and M. E. Schaps, The modular version of Maschke's theorem for normal abelian $ p$-Sylows, J. Pure Appl. Algebra 108 (1996), no. 3, 257-264. MR 1384005 (97e:16063)
  • 7. M. Gerstenhaber and M. E. Schaps, Hecke algebras, $ U\sb q{\rm sl}\sb n$, and the Donald-Flanigan conjecture for $ S\sb n$, Trans. Amer. Math. Soc. 349 (1997), no. 8, 3353-3371. MR 1390035 (97j:20012)
  • 8. M. Gerstenhaber, A. Giaquinto and M. E. Schaps, The Donald-Flanigan problem for finite reflection groups, Lett. Math. Phys. 56 (2001), no. 1, 41-72. MR 1848165 (2002g:16049)
  • 9. I. N. Herstein, Noncommutative Rings, published by The Mathematical Association of America, distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205 (37:2790)
  • 10. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons, Ltd., Chichester, UK, 1987. MR 934572 (89j:16023)
  • 11. M. Peretz and M. Schaps, Hecke algebras and separable deformations of dihedral groups, Far East J. Math. Sci. (FJMS) 1 (1999), no. 1, 17-26. MR 1686657 (2000i:20009)
  • 12. M. Schaps, A modular version of Maschke's theorem for groups with cyclic $ p$-Sylow subgroups, J. Algebra 163 (1994), no. 3, 623-635. MR 1265854 (95b:20015)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16S80

Retrieve articles in all journals with MSC (2000): 16S80


Additional Information

Nurit Barnea
Affiliation: Department of Mathematics, University of Haifa, Haifa 31905, Israel

Yuval Ginosar
Affiliation: Department of Mathematics, University of Haifa, Haifa 31905, Israel
Email: ginosar@math.haifa.ac.il

DOI: https://doi.org/10.1090/S0002-9939-08-09480-X
Received by editor(s): April 23, 2007
Published electronically: April 2, 2008
Communicated by: Martin Lorenz
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society