Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On contact surgery


Author: John B. Etnyre
Journal: Proc. Amer. Math. Soc. 136 (2008), 3355-3362
MSC (2000): Primary 57R17, 53D10
DOI: https://doi.org/10.1090/S0002-9939-08-09278-2
Published electronically: April 30, 2008
MathSciNet review: 2407103
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that +1-contact surgery on distinct Legendrian knots frequently produces contactomorphic manifolds. We also give examples where this happens for -1-contact surgery. As an amusing corollary we find overtwisted contact structures that contain a large number of distinct Legendrian knots with the same classical invariants and tight complements.


References [Enhancements On Off] (What's this?)

  • 1. Joan S. Birman and William W. Menasco, Stabilization in the braid groups. II. Transversal simplicity of knots, Geom. Topol. 10 (2006), 1425-1452 (electronic). MR 2255503
  • 2. Yuri Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002), no. 3, 441-483. MR 1946550 (2003m:53153)
  • 3. Fan Ding and Hansjörg Geiges, A Legendrian surgery presentation of contact 1#1-manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 3, 583-598. MR 2055048 (2005m:57038)
  • 4. Katarzyna Dymara, Legendrian knots in overtwisted contact structures, www.arxiv.org/abs/math.GT/0410122.
  • 5. Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000), Special Volume, Part II, 560-673, GAFA 2000 (Tel Aviv, 1999). MR 1826267 (2002e:53136)
  • 6. Yakov Eliashberg, Topological characterization of Stein manifolds of dimension 2#2, Internat. J. Math. 1 (1990), no. 1, 29-46. MR 1044658 (91k:32012)
  • 7. Judith Epstein, Dmitry Fuchs, and Maike Meyer, Chekanov-Eliashberg invariants and transverse approximations of Legendrian knots, Pacific J. Math. 201 (2001), no. 1, 89-106. MR 1867893 (2002h:57020)
  • 8. John B. Etnyre, Legendrian and transversal knots, Handbook of Knot Theory, Elsevier B. V., Amsterdam, 2005, pp. 105-185. MR 2179261
  • 9. John B. Etnyre and Ko Honda, Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001), no. 1, 63-120. MR 1959579 (2004d:57032)
  • 10. -, On symplectic cobordisms, Math. Ann. 323 (2002), no. 1, 31-39. MR 1906906 (2003c:57026)
  • 11. -, On connected sums and Legendrian knots, Adv. Math. 179 (2003), no. 1, 59-74. MR 2004728 (2004h:57005)
  • 12. -, Cabling and transverse simplicity, Ann. of Math. (2) 162 (2005), no. 3, 1305-1333. MR 2179731
  • 13. Robert E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693. MR 1668563 (2000a:57070)
  • 14. Ko Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000), 309-368 (electronic). MR 1786111 (2001i:53148)
  • 15. Paolo Lisca and András I. Stipsicz, Notes on the contact Ozsváth-Szabó invariants, Pacific Journal of Math. 228 (2006), 277-295. MR 2274521 (2007k:57052)
  • 16. -, Ozsváth-Szabó invariants and tight contact three-manifolds. I, Geom. Topol. 8 (2004), 925-945 (electronic). MR 2087073 (2005e:57069)
  • 17. Peter Ozsváth and Zoltán Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005), no. 1, 39-61. MR 2153455 (2006b:57043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57R17, 53D10

Retrieve articles in all journals with MSC (2000): 57R17, 53D10


Additional Information

John B. Etnyre
Affiliation: Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160
Email: etnyre@math.gatech.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09278-2
Received by editor(s): April 11, 2007
Received by editor(s) in revised form: July 11, 2007
Published electronically: April 30, 2008
Additional Notes: The author thanks Yasha Eliashberg for a helpful conversation during the preparation of this paper. Supported in part by NSF CAREER Grant (DMS–0239600) and FRG-0244663.
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society