Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The ``fundamental theorem'' for the algebraic $ K$-theory of spaces. III. The nil-term


Authors: John R. Klein and E. Bruce Williams
Journal: Proc. Amer. Math. Soc. 136 (2008), 3025-3033
MSC (2000): Primary 19D10; Secondary 19D35
DOI: https://doi.org/10.1090/S0002-9939-08-09293-9
Published electronically: April 29, 2008
MathSciNet review: 2407063
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we identify the ``nil-terms'' for Waldhausen's algebraic $ K$-theory of spaces functor as the reduced $ K$-theory of a category of equivariant spaces equipped with a homotopically nilpotent endomorphism.


References [Enhancements On Off] (What's this?)

  • [*] Nil Phenomena in Topology,
    Workshop at Vanderbilt University, Nashville, Tennessee, April 14-15, 2007.
  • [B] Bass, H: Algebraic $ K$-Theory,
    Benjamin, New York, 1968. MR 0249491 (40:2736)
  • [F]
    Farrell, T.: Private Communication, 2006.
  • [H$ _+$] Hüttemann, T., Klein, J.R., Vogell, W., Waldhausen, F., Williams, B.: The ``fundamental theorem'' for the algebraic $ K$-theory of spaces. I.
    J. Pure Appl. Algebra 160, 21-52 (2001). MR 1829311 (2002a:19003)
  • [H$ _+$2] Hüttemann, T., Klein, J.R., Vogell, W., Waldhausen, F., Williams, B.: The ``fundamental theorem'' for the algebraic $ K$-theory of spaces. II.
    J. Pure Appl. Algebra 167, 53-82 (2002). MR 1868117 (2002i:19003)
  • [G] Grayson, D.: Higher algebraic $ K$-theory II (after Daniel Quillen),
    Algebraic $ K$-theory, Lecture Notes in Math., vol. 551, Springer, Berlin, 1976, pp. 217-240. MR 0574096 (58:28137)
  • [GKM] Grunewald, J., Klein, J.R., Macko, T.: Operations on the A-theoretic nil-terms,
    submitted to Jour. of Topology, http://arxiv.org/pdf/math/0702580
  • [VS] Schwänzl, R., Vogt, R.M.: The categories of $ A\sb \infty$- and $ E\sb \infty$-monoids and ring spaces as closed simplicial and topological model categories.
    Arch. Math. (Basel) 56, 405-411 (1991). MR 1094430 (92b:18006)
  • [W] Waldhausen, F.: Algebraic $ K$-theory of spaces.
    Algebraic and Geometric Topology, Proceedings Rutgers, 1983, Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318-419. MR 802796 (86m:18011)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 19D10, 19D35

Retrieve articles in all journals with MSC (2000): 19D10, 19D35


Additional Information

John R. Klein
Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
Email: klein@math.wayne.edu

E. Bruce Williams
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email: williams.4@nd.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09293-9
Received by editor(s): May 7, 2007
Received by editor(s) in revised form: July 3, 2007
Published electronically: April 29, 2008
Communicated by: Paul Goerss
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society