Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the sign changes of coefficients of general Dirichlet series

Author: Wladimir de Azevedo Pribitkin
Journal: Proc. Amer. Math. Soc. 136 (2008), 3089-3094
MSC (2000): Primary 11M41, 30B50
Published electronically: April 30, 2008
MathSciNet review: 2407071
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Under what conditions do the (possibly complex) coefficients of a general Dirichlet series exhibit oscillatory behavior? In this work we invoke Laguerre's Rule of Signs and Landau's Theorem to provide a rather simple answer to this question. Furthermore, we explain how our result easily applies to a multitude of functions.

References [Enhancements On Off] (What's this?)

  • 1. T.M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Math., corrected fifth printing, Springer-Verlag, New York, 1998. MR 0434929 (55:7892)
  • 2. N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals, Dover, New York, 1986. MR 863284 (89d:41049)
  • 3. M.A. Chaudhry and S.M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman & Hall/CRC, Boca Raton, FL. 2002. MR 1887130 (2003c:33006)
  • 4. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Tables of Integral Transforms, 1, Bateman Manuscript Project, McGraw-Hill, New York, 1954.
  • 5. G. H. Hardy and M. Riesz, The General Theory of Dirichlet's series, Stechert-Hafner, New York, 1964; reprint of first edition, Cambridge Univ. Press, Cambridge, 1915. MR 0185094 (32:2564)
  • 6. M. Knopp, W. Kohnen, and W. Pribitkin, On the Signs of Fourier Coefficients of Cusp Forms, Ramanujan J. 7 (2003), no. 3, 269-277. MR 2035806 (2004m:11064)
  • 7. W. Kohnen, Sign Changes of Hecke Eigenvalues of Siegel Cusp Forms of Genus Two, Proc. Amer. Math. Soc. 135 (2007), no. 4, 997-999. MR 2262899 (2007j:11057)
  • 8. E.N. Laguerre, Sur la Théorie des Équations Numériques, J. Math. Pures Appl. 9 (1883), 99-146 (also in Œuvres de Laguerre, v. I, pp. 3-47, Gauthier-Villars, Paris, 1898).
  • 9. E. Landau, Über einen Satz von Tschebyschef, Math. Ann. 61 (1905), 527-550. MR 1511360
  • 10. G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Die Grundlehren der Mathematischen Wissenschaften 216, Springer-Verlag, Berlin, 1976. MR 1492448
  • 11. J-P. Serre, A Course in Arithmetic, Graduate Texts in Math. 7, corrected fourth printing, Springer-Verlag, New York, 1993. MR 0344216 (49:8956)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11M41, 30B50

Retrieve articles in all journals with MSC (2000): 11M41, 30B50

Additional Information

Wladimir de Azevedo Pribitkin
Affiliation: Department of Mathematics, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314
Email:, w\

Keywords: General Dirichlet series, oscillatory sequence, Mellin transform
Received by editor(s): July 23, 2007
Received by editor(s) in revised form: July 29, 2007
Published electronically: April 30, 2008
Additional Notes: This work was supported (in part) by The City University of New York PSC-CUNY Research Award Program (grant #68327-00 37).
Communicated by: Ken Ono
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society