Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Maximal $ n$-orthogonal modules for selfinjective algebras


Authors: Karin Erdmann and Thorsten Holm
Journal: Proc. Amer. Math. Soc. 136 (2008), 3069-3078
MSC (2000): Primary 16G10, 16D50, 16E10, 16G70
Published electronically: April 29, 2008
MathSciNet review: 2407069
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a finite-dimensional selfinjective algebra. We show that, for any $ n\ge 1$, maximal $ n$-orthogonal $ A$-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if $ A$ admits a maximal $ n$-orthogonal module, then all $ A$-modules are of complexity at most 1.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16G10, 16D50, 16E10, 16G70

Retrieve articles in all journals with MSC (2000): 16G10, 16D50, 16E10, 16G70


Additional Information

Karin Erdmann
Affiliation: Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB, United Kingdom
Email: erdmann@maths.ox.ac.uk

Thorsten Holm
Affiliation: Institut für Algebra und Geometrie, Otto-von-Guericke-Universität Magdeburg, Postfach 4120, 39016 Magdeburg, Germany – and – Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Address at time of publication: Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Welfengarten 1, 30167 Hannover, Germany
Email: thorsten.holm@mathematik.uni-magdeburg.de, holm@math.uni-hannover.de

DOI: http://dx.doi.org/10.1090/S0002-9939-08-09297-6
PII: S 0002-9939(08)09297-6
Keywords: Selfinjective algebras, maximal $n$-orthogonal modules.
Received by editor(s): August 8, 2006
Received by editor(s) in revised form: July 20, 2007
Published electronically: April 29, 2008
Additional Notes: We gratefully acknowledge the support of the Mathematisches Forschungsinstitut Oberwolfach through a Research in Pairs (RiP) project, and also the support through a London Mathematical Society Scheme 4 grant.
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.