Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Generalized inverses and Douglas equations

Authors: M. Laura Arias, Gustavo Corach and M. Celeste Gonzalez
Journal: Proc. Amer. Math. Soc. 136 (2008), 3177-3183
MSC (2000): Primary 47A50, 15A09
Published electronically: May 1, 2008
MathSciNet review: 2407082
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the general concept of reduced solution for a Douglas type equation and we parametrize these solutions using generalized inverses. On the other hand, we characterize different sorts of generalized inverses by means of solutions of Douglas type equations.

References [Enhancements On Off] (What's this?)

  • 1. A. Ben-Israel and T. N. E. Greville, Generalized inverses. Theory and applications. Second edition, Springer-Verlag, New York, 2003. MR 1987382 (2004b:15008)
  • 2. G. Corach, A. Maestripieri and M. Mbekhta, Metric and homogeneous structure of closed range operators, J. Operator Theory (in press).
  • 3. F. Deutsch, The angle between subspaces of a Hilbert space, Approximation theory, wavelets and applications (S. P. Singh, ed.), Kluwer, Dordrecht, 1995, 107-130. MR 1340886 (96e:46027)
  • 4. R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-416. MR 0203464 (34:3315)
  • 5. P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Mathematics 7 (1971), 254-281. MR 0293441 (45:2518)
  • 6. R. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 1997. MR 1468230 (98f:46001b)
  • 7. T. Kato, Perturbation theory for linear operators (second edition), Springer-Verlag, Berlin-New York, 1976. MR 0407617 (53:11389)
  • 8. J.-Ph. Labrousse and M. Mbekhta, Les opérateurs points de continuité pour la conorme et l'inverse de Moore-Penrose, Houston J. Math. 18 (1992), 7-23. MR 1159435 (93g:47004)
  • 9. E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc. 26 (1920), 394-395.
  • 10. M. Z. Nashed, Inner, outer, and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim. 9 (1987), 261-325. MR 887072 (88g:47006)
  • 11. R. A. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413. MR 0069793 (16:1082a)
  • 12. R. A. Penrose, On best approximation solutions of linear matrix equations, Proc. Cambridge Philos. Soc. 52 (1956), 17-19. MR 0074092 (17:536d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A50, 15A09

Retrieve articles in all journals with MSC (2000): 47A50, 15A09

Additional Information

M. Laura Arias
Affiliation: Instituto Argentino de Matematica, Saavedra 15, 1083 Buenos Aires, Argentina

Gustavo Corach
Affiliation: Instituto Argentino de Matemática, Saavedra 15, 1083 Buenos Aires, Argentina

M. Celeste Gonzalez
Affiliation: Instituto Argentino de Matemática, Saavedra 15, 1083 Buenos Aires, Argentina

Keywords: Douglas equation, generalized inverse, oblique projections
Received by editor(s): April 18, 2007
Received by editor(s) in revised form: July 13, 2007
Published electronically: May 1, 2008
Additional Notes: The authors were supported in part by UBACYT I030, CONICET PIP 5272
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society