Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Laplace transform of the digamma function: An integral due to Glasser, Manna and Oloa


Authors: Tewodros Amdeberhan, Olivier Espinosa and Victor H. Moll
Journal: Proc. Amer. Math. Soc. 136 (2008), 3211-3221
MSC (2000): Primary 33B15
DOI: https://doi.org/10.1090/S0002-9939-08-09300-3
Published electronically: April 30, 2008
MathSciNet review: 2407086
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The definite integral

$\displaystyle M(a):= \frac{4}{\pi} \int_{0}^{\pi/2} \frac{x^{2} \, dx } {x^{2} + \ln^{2}( 2 e^{-a} \cos x ) } $

is related to the Laplace transform of the digamma function

$\displaystyle L(a) := \int_{0}^{\infty} e^{-a s} \psi(s+1) \, ds, $

by $ M(a) = L(a) + \gamma/a$ when $ a > \ln 2$. Certain analytic expressions for $ M(a)$ in the complementary range, $ 0 < a \leq \ln 2$, are also provided.


References [Enhancements On Off] (What's this?)

  • 1. T. Amdeberhan, L. Medina, and V. Moll.
    The integrals in Gradshteyn and Ryzhik. Part 5: Some trigonometric integrals.
    Scientia, 15:47-60, 2007
  • 2. T. Amdeberhan, V. Moll, J. Rosenberg, A. Straub, and P. Whitworth.
    The integrals in Gradshteyn and Ryzhik. Part 9: Combinations of logarithms, rational and trigonometric functions.
    Scientia, to appear.
  • 3. D. Borwein and J. Borwein.
    On an intriguing integral and some series related to $ \zeta(4)$.
    Proc. Amer. Math. Soc., 123:1191-1198, 1995. MR 1231029 (95e:11137)
  • 4. O. Espinosa and V. Moll.
    On some definite integrals involving the Hurwitz zeta function. Part 1.
    The Ramanujan Journal, 6:159-188, 2002. MR 1908196 (2003f:11127)
  • 5. L. Euler.
    Exercitationes analyticae. Novi commentarii academiae scienticarum petropolitanae, 17, 1772, 173-204.
    In Opera Omnia, volume 15, pages 131-167. Teubner, Berlin, 1924.
  • 6. M. L. Glasser and D. Manna.
    On the Laplace transform of the psi-function. ``Tapas in Experimental Mathematics'' (T. Amdeberhan and V. Moll, eds.),
    Contemporary Mathematics, vol. 457, Amer. Math. Soc., Providence, RI, 2008, pp. 193-202.
  • 7. I. S. Gradshteyn and I. M. Ryzhik.
    Table of Integrals, Series, and Products.
    Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007. MR 1773820 (2001c:00002)
  • 8. K. S. Kolbig.
    On the integral $ \int_{0}^{\pi/2} \log^{n} \cos x \, \log^{p} \sin x \, dx$.
    Math. Comp., 40:565-570, 1983. MR 689472 (84d:33004)
  • 9. V. Moll.
    The integrals in Gradshteyn and Ryzhik. Part 1: A family of logarithmic integrals.
    Scientia, 14:1-6, 2007. MR 2330697
  • 10. V. Moll.
    The integrals in Gradshteyn and Ryzhik. Part 2: Elementary logarithmic integrals.
    Scientia, 14:7-15, 2007. MR 2330698
  • 11. V. Moll.
    The integrals in Gradshteyn and Ryzhik. Part 3: Combinations of logarithms and exponentials.
    Scientia, 15:31-36, 2007. MR 2367911
  • 12. V. Moll.
    The integrals in Gradshteyn and Ryzhik. Part 4: The gamma function.
    Scientia, 15:37-46, 2007. MR 2367912
  • 13. O. Oloa.
    Some Euler-type integrals and a new rational series for Euler's constant.
    Contemporary Mathematics, ``Tapas in Experimental Mathematics'' (T. Amdeberhan and V. Moll, eds.),
    Contemporary Mathematics, vol. 457, Amer. Math. Soc., Providence, RI, 2008, pp. 237-248.
  • 14. M. Petkovsek, H. Wilf, and D. Zeilberger.
    A=B.
    A K Peters, Ltd., 1st edition, 1996. MR 1379802 (97j:05001)
  • 15. I. Vardi.
    Integrals, an introduction to analytic number theory.
    Amer. Math. Monthly, 95:308-315, 1988. MR 935205 (89b:11073)
  • 16. Z. Yue and K.S. Williams.
    Values of the Riemann zeta function and integrals involving $ \log(2 \sinh \frac{\theta}{2})$ and $ \log( 2 \sin \frac{\theta}{2} )$.
    Pac. Jour. Math., 168:271-289, 1995. MR 1339953 (96f:11170)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33B15

Retrieve articles in all journals with MSC (2000): 33B15


Additional Information

Tewodros Amdeberhan
Affiliation: Department of Mathematics, Tulane University, New Orleans, Louisiana 70118
Email: tamdeber@tulane.edu

Olivier Espinosa
Affiliation: Departmento de Física, Universidad Téc. Federico Santa María, Valparaiso, Chile
Email: olivier.espinosa@usm.cl

Victor H. Moll
Affiliation: Department of Mathematics, Tulane University, New Orleans, Louisiana 70118
Email: vhm@math.tulane.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09300-3
Keywords: Laplace transform, digamma function
Received by editor(s): July 23, 2007
Published electronically: April 30, 2008
Additional Notes: The work of the third author was partially funded by NSF-DMS 0409968.
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society