Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A generalization of Miller's primality theorem


Authors: Pedro Berrizbeitia and Aurora Olivieri
Journal: Proc. Amer. Math. Soc. 136 (2008), 3095-3104
MSC (2000): Primary 11Y11
Published electronically: May 7, 2008
MathSciNet review: 2407072
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any integer $ r$ we show that the notion of $ \omega$-prime to base $ a$ introduced by Berrizbeitia and Berry, 2000, leads to a primality test for numbers $ n$ congruent to $ 1$ modulo $ r$, which runs in polynomial time assuming the Extended Riemann Hypothesis (ERH). For $ r = 2$ we obtain Miller's classical result.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11Y11

Retrieve articles in all journals with MSC (2000): 11Y11


Additional Information

Pedro Berrizbeitia
Affiliation: Departamento de Matemáticas P. y A., Universidad Simón Bolívar, Sartenejas, Caracas 1080-A, Venezuela
Email: pedrob@usb.ve

Aurora Olivieri
Affiliation: Departamento de Matemáticas P. y A., Universidad Simón Bolívar, Sartenejas, Caracas 1080-A, Venezuela
Email: olivieri@usb.ve

DOI: http://dx.doi.org/10.1090/S0002-9939-08-09303-9
PII: S 0002-9939(08)09303-9
Received by editor(s): April 24, 2007
Received by editor(s) in revised form: August 15, 2007
Published electronically: May 7, 2008
Communicated by: Ken Ono
Article copyright: © Copyright 2008 American Mathematical Society