HERMITIAN LATTICES
WITHOUT A BASIS OF MINIMAL VECTORS

BYEONG MOON KIM AND POO-SUNG PARK

Abstract. It is shown that over infinitely many imaginary quadratic fields there exists a Hermitian lattice in all even ranks \(n \geq 2 \) which is generated by its \(4n \) minimal vectors but which is not generated by \(2n - 1 \) minimal vectors.

In general, it is not true that a quadratic lattice always has a basis of minimal vectors, even though it is generated by its minimal vectors. This question was asked by Louis Michel and answered by Conway and Sloane [1]. Their explicit answer was the construction of a lattice of rank 11 with this property. We found a Hermitian lattice with a similar property over an imaginary quadratic field. That is, a free Hermitian lattice is generated by its minimal vectors, but has no basis of minimal vectors. Furthermore, the Hermitian lattice is not generated by \(2n - 1 \) minimal vectors if it is of even rank \(n \). This is trivially constructed from the binary Hermitian lattice in the following theorems.

Theorem 1. Let \(m = 4a^2 - 1 \) be a squarefree positive integer with \(a \geq 2 \). Then the binary Hermitian lattice \(L \) with Gram matrix

\[
\begin{pmatrix}
2a & \sqrt{-m} \\
-\sqrt{-m} & 2a
\end{pmatrix}
\]

over \(\mathbb{Q}(\sqrt{-m}) \) has minimal norm \(a \), is generated by its 8 minimal vectors, but is not generated by any 3 minimal vectors. In addition, these minimal vectors are not primitive.

Proof. Since \(m \equiv 3 \pmod{4} \), the ring \(\mathcal{O} \) of integers of \(\mathbb{Q}(\sqrt{-m}) \) is generated by 1 and \(\omega \), where \(\omega = \frac{1 + \sqrt{-m}}{2} \). Let \(v_1 \) and \(v_2 \) be the basis of the Hermitian lattice. Then \(v_1 \cdot v_1 = 2a, v_1 \cdot v_2 = -1 + 2\omega, v_2 \cdot v_1 = -1 + 2\omega, v_2 \cdot v_2 = 2a \). Suppose that a vector \(xv_1 + yv_2 \) with \(x, y \in \mathcal{O} \) has norm smaller than \(a \). That is,

\[
(xv_1 + yv_2) \cdot (xv_1 + yv_2) = x\bar{x} v_1 \cdot v_1 + x\bar{y} v_1 \cdot v_2 + y\bar{y} v_2 \cdot v_2 = \frac{1}{2a} |2ax + (-1 + 2\omega)y| |2ax + (-1 + 2\omega)y| + \frac{1}{2a} |\bar{y}|^2 < a
\]
or
\[z\bar{\omega} + y\bar{\omega} < 2a^2 \]
if we set \(z = 2ax + (-1 + 2\omega)y \).

Let \(x = x_1 + x_2\omega \) and \(y = y_1 + y_2\omega \) with \(x_1, x_2, y_1, y_2 \in \mathbb{Z} \). If \(y_2 \geq 2 \) or \(y_2 \leq -2 \), then \(y\bar{\omega} \geq 4a^2 \). Thus \(y\bar{\omega} \geq 0 \) or \(\pm 1 \). Note that
\[z = 2ax + (-1 + 2\omega)y = 2ax_1 + y_1 + 2a^2y_2 + (2ax_2 - 2y_1 - y_2)\omega. \]

If \(y_2 = \pm 1 \), then \(y\bar{\omega} \geq a^2 \). Thus \(z\bar{\omega} \) can be smaller than \(a^2 \) only when \(2ax_2 - 2y_1 - y_2 = 0 \), which is impossible by checking the parity. So \(y_2 = 0 \), and the same argument shows that \(x_2 = 0 \).

Then, \(z = 2ax_1 + y_1 - 2y_1\omega \). Since \(z\bar{\omega} < 2a^2 \), \(y_1 = 0 \) and \(x_1 = 0 \) subsequently. That is, if \(z\bar{\omega} + y\bar{\omega} < 2a^2 \), then \(x = y = 0 \).

A similar argument shows that \(L \) has exactly 8 minimal vectors:
\[\pm(a\omega_1 - \omega_2), \pm(a\omega_1 + \bar{\omega}_2), \pm(\omega_1 + a\omega_2), \pm(\bar{\omega}_1 - a\omega_2), \]
and their norms are all \(a \). It is clear that these vectors are not primitive since \(1 \not\in aO + \omega O \). Since \(v_1 = (\omega_1 + a\omega_2) + (\bar{\omega}_1 - a\omega_2) \) and \(v_2 = -(a\omega_1 - \omega_2) + (a\omega_1 + \bar{\omega}_2) \), these minimal vectors generate \(L \).

Now we will show that no set of three minimal vectors generates \(L \). Suppose that \(a\omega_1 - \omega_2, a\omega_1 + \bar{\omega}_2, \) and \(\omega_1 + a\omega_2 \) generate \(\bar{\omega}_1 - a\omega_2 \). That is,
\[(xa + ya + za)v_1 + (-x\omega + y\bar{\omega} + za)v_2 = \bar{\omega}_1 - a\omega_2 \]
for some \(x, y, z \in O \). This means that \(\bar{\omega} \in (a, \omega)O \) and \(a \in (\omega, \bar{\omega}, a)O \) simultaneously. But this is impossible since \(1 = \omega + \bar{\omega} \not\in (a, \omega)O \). Similarly we can verify that any 3 minimal vectors never generate all minimal vectors.

Theorem 2. Let \(m = (2a + 1)^2 - 2 \) be a squarefree positive integer with \(a \geq 2 \). Then the binary Hermitian lattice \(L \) with Gram matrix
\[\begin{pmatrix} 2a + 1 & \sqrt{-m} \\ -\sqrt{-m} & 2a + 1 \end{pmatrix} \]
over \(\mathbb{Q}(\sqrt{-m}) \) has minimal norm \(2a \), is generated by its 8 minimal vectors, but is not generated by any 3 minimal vectors. In addition, these minimal vectors are not primitive.

Proof. The ring \(O \) of integers of \(\mathbb{Q}(\sqrt{-m}) \) is also \(\mathbb{Z}[\omega] \), where \(\omega = \frac{1 + \sqrt{-m}}{2} \). Let \(v_1 \) and \(v_2 \) be the basis of the Hermitian lattice. Then \(v_1 \cdot v_1 = 2a + 1, v_1 \cdot v_2 = -1 + 2\omega, \)
\(v_2 \cdot v_1 = -1 + 2\bar{\omega}, v_2 \cdot v_2 = 2a + 1 \). Suppose that a vector \(xv_1 + yv_2 \) with \(x, y \in O \) has norm smaller than \(2a \). That is,
\[(xv_1 + yv_2) \cdot (xv_1 + yv_2) \]
\[= x\bar{\omega}v_1 \cdot v_1 + x\bar{\omega}v_1 \cdot v_2 + x\bar{\omega}v_1 \cdot v_2 + y\bar{\omega}v_2 \cdot v_2 \]
\[= \frac{1}{2a + 1}[(2a + 1)x + (-1 + 2\omega)y][(2a + 1)x + (-1 + 2\omega)y] + \frac{2}{2a + 1}y\bar{\omega} \]
\[< 2a \]
or
\[(1) \quad z\bar{\omega} + 2y\bar{\omega} < 2a(2a + 1) \]
if we set
\[z = (2a + 1)x + (-1 + 2ω)y \]
\[= (2a + 1)x_1 + y_1 + 2a(a + 1)y_2 + ((2a + 1)x_2 - 2y_1 - y_2)ω. \]

If \(y_2 \geq 2 \) or \(y_2 \leq -2 \), then \(y\overline{y} \geq 4a(a + 1) > 2a(2a + 1) \). So \(y_2 = 0 \) or \(±1 \). The same argument shows that \(x_2 = 0 \) or \(x_2 = ±1 \).

Consider the case of \(x_2 = y_2 = 0 \). Then, the inequality \((1) \) becomes
\[([2a + 1)x_1 + y_1 - 2y_1\omega][2a + 1)x_1 + y_1 - 2y_1\omega] + 2y_1^2 < 2a(2a + 1). \]

This inequality does not hold unless \(y_1 = 0 \). If \(y_1 = 0 \), then the LHS becomes \((2a + 1)^2 x_1^2\). Thus the inequality holds only when \(x = y = 0 \).

Consider the case of \(x_2 = ±1 \) and \(y_2 = 0 \). Then,
\[z = (2a + 1)x_1 + y_1 + (±(2a + 1) - 2y_1)ω. \]

Since the modulus of \(±(2a + 1) - 2y_1 \) should be smaller than 2, we can conclude that \(y_1 = ±a \) or \(±(a + 1) \) and
\[z\overline{z} + 2y\overline{y} \geq \begin{cases} (a + 1 - ω)(a + 1 - \overline{ω}) + 2a^2 = 4a^2 + 2a & \text{if } y_1 = ±a, \\ (a - ω)(a - \overline{ω}) + 2(a + 1)^2 = 4a^2 + 4a + 2 & \text{if } y_1 = ±(a + 1) \end{cases} \]
\[≥ 2a(2a + 1). \]

This is absurd. We can deduce the same result when \(x_2 = 0 \) and \(y_2 = ±1 \). So the last case is that \(x_2 = ±1 \) and \(y_2 = ±1 \). In each case, the coefficient of \(ω \) in \(z \) is one of the following:
\[2(a - y_1), \ 2(a + 1 - y_1), \ -2(a + 1 + y_1), \ -2(a + y_1). \]

These coefficients should vanish and in any case \(z\overline{z} + 2y\overline{y} ≥ 2a(2a + 1) \). Hence the minimal norm of the Hermitian lattice \(L \) cannot be smaller than \(2a \).

A similar argument shows that there exist exactly 8 minimal vectors
\[±(av_1 - \omega v_2), \ ±(av_1 + \overline{ω}v_2), \ ±(ωv_1 + av_2), \ ±(\overline{ω}v_1 - av_2) \]
in \(L \). Other parts of this theorem are obvious. \(\square \)

Now we prove the infinitude of squarefree integers of the form \(4a^2 - 1 \) and \((2a + 1)^2 - 2 \). These facts are deduced since the squares of the two polynomials have degree 4 and they assume infinitely many cubefree integers \([2]\). In general, let \(f(x) \) be a polynomial of degree \(ℓ \geq 2 \) whose coefficients are integers with highest common factor 1. If \(f(x) \) has a positive leading coefficient and is not the \(ℓ \)-th power of a linear polynomial, then any \(ℓ \)-th powerfree integer of the form \(f(n) \) has asymptotically positive density

\[\prod_{p \text{ prime}} \left(1 - \frac{N_p}{p^\ell} \right), \]

where \(N_p = \#\{0 \leq k \leq p^\ell - 1 \mid f(k) \equiv 0 \pmod{p^\ell} \} \).

The infinitude for the form \(4a^2 - 1 = (2a - 1)(2a + 1) \) can be proved in an easier way \([3]\).
References

Department of Mathematics, Kangnung National University, Kangnung, Korea

E-mail address: kbs@kangnung.ac.kr

Korea Institute for Advanced Study, Cheongnyangni 2-dong, Dongdaemun-gu, Seoul, 130-722, Korea

E-mail address: sung@kias.re.kr